| ⊢ | f ; (g ∨ g1) ≡ f ; g ∨ f ; g1 | ChopOrEqv | 
The proof for ⊂ is immediate from axiom ChopOrImp.
Here is the proof for the converse:
| 1 | ⊢ g ⊃ g ∨ g1                          | |
| 2  | ⊢ f ; g ⊃ f ; (g ∨ g1)            | |
| 3  | ⊢ g1 ⊃ g ∨ g1                         | |
| 4  | ⊢ f ; g1 ⊃ f ; (g ∨ g1)          | |
| 5  | ⊢ f ; g ∨ f ; g1 ⊃ f ; (g ∨ g1) | 
qed