| ⊢ | ¬w ∧ f ⊃empty | WhileIntro | |
| ⊢ w ∧ f ⊃ (g ∧more) ; f | |||
| ⇒ ⊢ f ⊃while w do g | 
Proof:
| 1 | ⊢ ¬w ∧ f ⊃empty                                        | given                                        | 
| 2  | ⊢ w ∧ f ⊃ (g ∧more) ; f                      | given                                        | 
| 3  | ⊢ while w do g ≡                | |
| (¬w ∧empty) ∨ (w ∧ (g ∧more) ; while w do g) | ||
| 4  | ⊢ f ∧¬while w do g ⊃             | |
| (g ∧more) ; f ∧¬((g ∧more) ; while w do g)     | ||
| 5  | ⊢ g ∧more ⊃more                                         | |
| 6  | ⊢ f ⊃while w do g                             | 
qed