| ⊢ | f ∧¬g ⊃ h ; f ∧¬(h ; g), ⊢ h ⊃ more ⇒ ⊢ f ⊃ g | ChopContra | 
Proof:
| 1 | ⊢ f ∧¬g ⊃ h ; f ∧¬(h ; g)       | given                             | 
| 2  | ⊢ h ⊃more                                  | given                             | 
| 3  | ⊢ h ; f ∧¬(h ; g) ⊃ h ; (f ∧¬g) | |
| 4  | ⊢ h ; (f ∧¬g) ⊃more ; (f ∧¬g)  | |
| 5  | ⊢ f ∧¬g ⊃more ; (f ∧¬g)        | |
| 6  | ⊢ f ⊃ g                            | 
qed