| ⊢ | w ∧ f∗≡ w ∧ ( w ∧ f)∗ | BoxStateAndCSEqvCS | 
Proof for  ⊃ :
| 1 | ⊢  w ⊃ w                                                 | |
| 2  | ⊢ f∗∧more ≡ (f ∧more) ; f∗                 | |
| 3  | ⊢  w ∧ ((f ∧more) ; f∗) ≡ ( w ∧ f ∧more) ; ( w ∧ f∗) | |
| 4  | ⊢  w ∧ f ∧more ⊃ ( w ∧ f) ∧more                               | |
| 5  | ⊢ ( w ∧ f ∧more) ; ( w ∧ f∗) ⊃             | |
| (( w ∧ f) ∧more) ; ( w ∧ f∗)                                    | ||
| 6  | ⊢ ( w ∧ f∗) ∧more ⊃ (( w ∧ f) ∧more) ; ( w ∧ f∗)     | |
| 7  | ⊢  w ∧ f∗⊃ ( w ∧ f)∗                     | |
| 8  | ⊢  w ∧ f∗⊃ w ∧ ( w ∧ f)∗                  | 
qed
Proof for ⊂:
| 1 | ⊢ ( w ∧ f)∗⊃ ( w)∗      | |
| 2  | ⊢ w ∧ ( w)∗≡ w            | |
| 3  | ⊢ ( w ∧ f)∗⊃ f∗        | |
| 4  | ⊢ w ∧ ( w ∧ f)∗⊃ w ∧ f∗ | 
qed
See also the lemma BoxStateAndChopEqvChop for chop.