| ⊢ | f ∧more ⊃ (g ∧more) ; f ⇒ ⊢ f ⊃ g∗ | CSIntro | 
Proof:
| 1 | ⊢ f ∧more ⊃ (g ∧more) ; f                       | given                   | 
| 2  | ⊢ more ≡¬empty                                                 | |
| 3  | ⊢ f ∧¬empty ⊃ (g ∧more) ; f                    | |
| 4  | ⊢ g∗≡empty ∨ (g ∧more) ; g∗            | |
| 5  | ⊢ f ∧¬g∗⊃ (g ∧more) ; f ∧¬((g ∧more) ; g∗) | |
| 6  | ⊢ g ∧more ⊃more                                              | |
| 7  | ⊢ f ⊃ g∗                          | 
qed