| ⊢ | f ⊃ empty ∨ ( w ∧more) ; f ⇒ ⊢ w ∧ f ⊃ w | CSImpBox | 
Proof:
| 1  | ⊢ f ⊃empty ∨ ( w ∧more) ; f                                 | given                                               | 
| 2  | ⊢ w ∧¬ w ⊃¬empty                                                          | |
| 3  | ⊢ w ∧ f ∧¬ w ⊃ ( w ∧more) ; f                             | |
| 4  | ⊢  w ∧more ⊃ ( w ∧more) ∧fin w                            | |
| 5  | ⊢ ( w ∧more) ; f ⊃ (( w ∧more) ∧fin w) ; f                 | |
| 6  | ⊢ (( w ∧more) ∧fin w) ; f ≡ ( w ∧more) ; (w ∧ f)            | |
| 7  | ⊢ ¬ w ⊃ ( w)  ¬ w                                           | |
| 8  | ⊢ ( w)  ¬ w ⊃ ( w ∧more)  ¬ w                             | |
| 9  | ⊢ ( w ∧more) ; (w ∧ f) ∧ ( w ∧more)  ¬ w ⊃        | |
| ( w ∧more) ; ((w ∧ f) ∧¬ w)                                        | ||
| 10 | ⊢ (w ∧ f) ∧¬ w ⊃ ( w ∧more) ; ((w ∧ f) ∧¬ w)           | |
| 11 | ⊢ ( w ∧more) ; ((w ∧ f) ∧¬ w) ⊃more ; ((w ∧ f) ∧¬ w) | |
| 12 | ⊢ (w ∧ f) ∧¬ w ⊃more ; ((w ∧ f) ∧¬ w)                    | |
| 13 | ⊢ w ∧ f ⊃ w                                                 | 
qed