| ⊢ | (f ; g) ∧fin w ≡ f ; (g ∧fin w) | ChopAndFin | 
Proof for  ⊃ :
| 1 | ⊢ fin w ⊃true  fin w                     | |
| 2  | ⊢ (f ; g) ∧fin w ⊃ (f ; g) ∧true  fin w | |
| 3  | ⊢ (f ; g) ∧true  fin w ⊃ f ; (g ∧fin w) | |
| 4  | ⊢ (f ; g) ∧fin w ⊃ f ; (g ∧fin w)       | |
qed
Proof for ⊂:
| 1 | ⊢ f ; (g ∧fin w) ⊃ f ; g           | |
| 2  | ⊢ f ; (g ∧fin w) ⊃ f ; fin w        | |
| 3  | ⊢ f ; fin w ⊃fin w                 | |
| 4  | ⊢ fin w ⊃fin w                    | |
| 5  | ⊢ f ; (g ∧fin w) ⊃ (f ; g) ∧fin w | |
qed
Here is a corollary used in some proofs by contradiction: