3.2 Semantics

Each state σi is the union of the mapping from the set of integer variables IntVar to the set of integer values and the mapping from propositional variables PropVar to set of Boolean values {tt, }.

Each interval has at least one state. The length |σ| of an interval σ0…σn is equal to n, one less than the number of states in the interval (this has always been a convention in ITL), i.e., a one state interval has length 0. Let σ = σ0σ1σ2 be an interval then

The informal semantics of the most interesting constructs are as follows:

Let Σ+ denote the set of all finite intervals and Σω denotes the set of all infinite intervals.
Let Expressions denote the set of (integer or Boolean) expressions.
Let Val denote the set of integer or Boolean values (Bool).
Let E( ) denote the meaning function from Expressions × + Σω) to Val.
Let Formulae denote the set of ITL formulae.
Let M( ) denote the meaning function from Formulae × + Σω) to Bool (set of Boolean values, {tt, }).
Let σ = σ0σ1 denote an interval.
We write σ V σif the intervals σ and σare identical with the possible exception of their mappings for the variable V .
Let choose-any-from(Val) denote the choice function that selects an arbitrary value from Val.
The formal semantics is listed in Table 10:

Table 10: Semantics of finite and infinite ITL
Ez(σ)
=
z
EA(σ)
=
σ0(A)
Eig(ie1,…,ien)(σ)
=
ig(Eie1(σ),…, Eien(σ))
E A(σ)
=
σ1(A)
if |σ| > 0
choose-any-from()
otherwise
Efin A(σ)
=
σ|σ|(A)
if σ is finite
choose-any-from()
otherwise
Eb(σ)
=
b
EQ(σ)
=
σ0(Q)
Ebg(be1,…,ben)(σ)
=
bg(Ebe1(σ),…, Eben(σ))
E Q(σ)
=
σ1(Q)
if |σ| > 0
choose-any-from(Bool)
otherwise
Efin Q(σ)
=
σ|σ|(Q)
if σ is finite
choose-any-from(Bool)
otherwise
Mtrue(σ)
=
tt
Mh(e1,…,en)(σ) = tt
iff
h(Ee1(σ),…, Een(σ))
M¬f(σ) = tt
iff
not (Mf(σ) = tt)
Mf1 f2(σ) = tt
iff
(Mf 1(σ) = tt) and (Mf2(σ) = tt)
Mskip(σ) = tt
iff
|σ| = 1
MV f(σ) = tt
iff
(for all σ s.t. σ V σ, Mf(σ) = tt)
Mf1 ; f2(σ) = tt
iff
(exists k, s.t. Mf1(σ0…σk) = tt and Mf2(σk…σ|σ|) = tt)
or (σ is infinite and Mf1(σ) = tt)
Mf(σ) = tt
iff
if σ is finite then
(exist l0,…,ln s.t. l0 = 0 and ln = |σ| and
  for all 0 i < n,li < li+1 and Mf(σli…σli+1) = tt)
else
(exist l0,…,ln s.t. l0 = 0 and
  Mf(σln…σ|σ|) = tt and
  for all 0 i < n,li < li+1 and Mf(σli…σli+1) = tt)
or
(exist an infinite number of li s.t. l0 = 0 and
  for all 0 i,li < li+1 and Mf(σli…σli+1) = tt)

2024-08-02
Contact | Home | ITL home | Course | Proofs | Algebra | FL
© 1996-2024