| ⊢ | w ∧ (f ; g) ⊃ (w ∧ f) ; g | StateAndChopImport | 
Proof:
| 1 | ⊢ w ⊃ w                     | |
| 2  | ⊢ w ∧ (f ; g) ⊃ w ∧ (f ; g) | |
| 3  | ⊢  w ∧ (f ; g) ⊃ (w ∧ f) ; g | |
| 4  | ⊢ w ∧ (f ; g) ⊃ (w ∧ f) ; g  | 
qed
With this proved, we can easily combine it with theorem StateChopExportA to deduce the following equivalence: