| ⊢ f ⊃ more ⇒ ⊢ f⋆ ⌢ g ≡ g ∨ (f ⌢ (f⋆ ⌢ g)) | ImpMoreChopStarChopEqvRule | 
Proof:
| 1 | f  ⊃ more                                                                         | Assump                                   | 
| 2  | f⋆ ≡empty  ∨ (f ⌢ f⋆)                                           | |
| 3  | f⋆ ⌢ g ≡ (empty  ∨ (f ⌢ f⋆)) ⌢ g                         | |
| 4  | (empty ∨ (f ⌢ f⋆)) ⌢ g ≡ (empty ⌢ g) ∨ ((f ⌢ f⋆) ⌢ g) | |
| 5  | empty ⌢ g ≡ g                                               | |
| 6  | (f ⌢ f⋆) ⌢ g ≡ f ⌢ (f⋆ ⌢ g)                                  | |
| 7  | f⋆ ⌢ g ≡ g ∨ (f ⌢ (f⋆ ⌢ g))                                  | 
qed