| ⊢ f ⊃ more ⇒ ⊢ f⋆ ≡empty ∨ (f ⌢ f⋆) | ImpMoreChopStarEqvRule | 
Proof:
| 1 | f  ⊃ more                                  | Assump                      | 
| 2  | f ∧more ≡ f                     | |
| 3  | (f ∧more) ⌢ f⋆ ≡ f ⌢ f⋆       | |
| 4  | f⋆ ≡empty ∨ ((f ∧more) ⌢ f⋆) | |
| 5  | f⋆ ≡empty ∨ (f ⌢ f⋆)            | 
qed