| ⊢ (f ∧ g) ≡ f ∧ g | BfAndEqv | 
Proof:
| 1 | (f ∧ g)  ⊃ f                          | |
| 2  |  (f ∧ g)  ⊃  f                         | |
| 3  | (f ∧ g)  ⊃ g                          | |
| 4  |  (f ∧ g)  ⊃  g                         | |
| 5  | f  ⊃ (g  ⊃ (f ∧ g))                    | |
| 6  |  f  ⊃  (g  ⊃ (f ∧ g))                   | |
| 7  |  (g  ⊃ (f ∧ g))  ⊃ ( g  ⊃  (f ∧ g)) | |
| 8  |  f ∧ g  ⊃  (f ∧ g)                      | |
| 9  |  (f ∧ g) ≡ f ∧ g                    | 
qed