| ⊢ | (f ⊃ g) ⊃ (while w do f) ⊃ (while w do g) | BaWhileImpWhile | 
Proof:
| 1 | ⊢ (f  ⊃ g) ⊃ ((w ∧ f)  ⊃ (w ∧ g)                             | |
| 2  | ⊢  (f  ⊃ g) ⊃ ((w ∧ f)  ⊃ (w ∧ g))                           | |
| 3  | ⊢  ((w ∧ f)  ⊃ (w ∧ g)) ⊃ ((w ∧ f)∗ ⊃ (w ∧ g)∗)        | |
| 4  | ⊢  (f  ⊃ g) ⊃ ((w ∧ f)∗∧fin ¬w  ⊃ (w ∧ g)∗∧fin ¬w) | |
| 5  | ⊢  (f  ⊃ g) ⊃ (while w do f)  ⊃ (while w do g)                | 4, def. of while  | 
qed