| ⊢ | (f ⊃ g) ⊃ f ⊃ g | BoxImpDist | 
Proof:
| 1 | ⊢ f  ⊃ g ⊃¬g  ⊃ ¬f                      | |
| 2  | ⊢  (f  ⊃ g) ⊃ (¬g  ⊃ ¬f)                    | |
| 3  | ⊢  (¬g  ⊃ ¬f) ⊃ (true ; ¬g)  ⊃ (true ; ¬f) | |
| 4  | ⊢  (f  ⊃ g) ⊃ (true ; ¬g)  ⊃ (true ; ¬f)     | |
| 5  | ⊢  (f  ⊃ g) ⊃¬g  ⊃ ¬f                  | 4, def. of            | 
| 6  | ⊢  (f  ⊃ g) ⊃¬¬f  ⊃ ¬¬g             | |
| 7  | ⊢  (f  ⊃ g) ⊃ f  ⊃  g                     | 6, def. of            | 
qed