| ⊢ | f ⊃ more ; f ⇒ ¬f | MoreChopLoop | 
Proof:
| 1  | ⊢ f ⊃more ; f                      | given                                     | 
| 11 | ⊢  f ⊃ (more ; f)                      | |
| 12 | ⊢  (more ; f) ≡true ; (more ; f)       | def. of                         | 
| 13 | ⊢ true ; (more ; f) ≡ (true ; more) ; f | |
| 14 | ⊢  (more ; f) ≡more ; f              | |
| 2  | ⊢ more ; f ≡ f                    | |
| 3  | ⊢  f ⊃ f                          | |
| 4  | ⊢ ¬( f)                                 | |
| 5  | ⊢ ¬( f) ⊃¬f                      | |
| 6  | ⊢ ¬f                                | 
qed
Here is a corollary: