| ⊢ | (f ⊃ fin w) ≡ f w | BiImpFinEqvYieldsState | 
Proof:
| 1 | ⊢  (f ∧fin ¬w) ≡ f ; ¬w            | |
| 2  | ⊢ f ∧fin ¬w ≡ f ∧¬fin w          | |
| 3  | ⊢ f ∧¬fin w ≡¬(f  ⊃ fin w)       | |
| 4  | ⊢ f ∧fin ¬w ≡¬(f  ⊃ fin w)       | |
| 5  | ⊢  (f ∧fin ¬w) ≡¬(f  ⊃ fin w)    | |
| 6  | ⊢ ¬(f  ⊃ fin w) ≡¬ (f  ⊃ fin w) | |
| 7  | ⊢ ¬ (f  ⊃ fin w) ≡ f ; ¬w          | |
| 8  | ⊢  (f  ⊃ fin w) ≡¬(f ; ¬w)          | |
| 9  | ⊢  (f  ⊃ fin w) ≡ f  w              | 8, def. of                   | 
qed