5 Kleene and Omega Algebra
Kleene and Omega Algebra [Slide 20]
Let K denote š«(Ī£+ āŖ Ī£Ļ),
(K,āŖ,ā
,ā
,Ī£) is an idempotent left semiring iļ¬ (for a,b,c ā K)
-
(K,āŖ,ā
) is a commutative monoid , i.e.,
a āŖb = b āŖa
a āŖā
= a
a āŖ (b āŖc) = (a āŖb) āŖc
-
(K,ā
,Ī£) is a monoid, i.e.,
a ā
Ī£ = a
Ī£ ā
a = a
a ā
(b ā
c) = (a ā
b) ā
c
- (a āŖb) ā
c = a ā
c āŖb ā
c
- ā
ā
a = ā
- a āŖa = a
- b āc implies a ā
b āa ā
c where a āb iļ¬ a āŖb = b
Kleene and Omega Algebra [Slide 21]
(K,ā¼ ) is a Boolean idempotent left semiring iļ¬
- (K,āŖ,ā
,ā
,Ī£) is an idempotent left semiring
- a = ā¼(ā¼a āŖā¼b) āŖā¼(ā¼a āŖb) (Huntington equation)
As usual we have the following
- a ā©b = ā¼(ā¼a āŖā¼b)
- T = a āŖā¼a (greatest element w.r.t. ā, i.e. Ī£+ āŖ Ī£Ļ)
- ā
= a ā©ā¼a (smallest element w.r.t. ā, i.e., ā
)
Kleene and Omega Algebra [Slide 22]
(K,ā) is a Boolean strong left (lazy) Kleene algebra iļ¬
- (K,ā¼ ) is a Boolean idempotent left semiring
- Ī£ āŖa ā
aāāaā
- b āŖa ā
c āc implies aāā
b āc
- b āŖc ā
a āc implies b ā
aāāc
(K,Ļ) is a Boolean left (lazy) omega algebra iļ¬
- (K,ā) is a Boolean strong left (lazy) Kleene algebra
- aĻ = a ā
aĻ
- c āb āŖa ā
c implies c āaĻ āŖaāā
b