Each state σi is the union of the mapping from the set of integer variables IntVar to the set of integer values ℤ and the mapping from propositional variables PropVar to set of Boolean values {tt, ff}.
Each interval has at least one state. The length |σ| of an interval σ0…σn is equal to n, one less than the number of states in the interval (this has always been a convention in ITL), i.e., a one state interval has length 0. Let σ = σ0σ1σ2… be an interval then
The informal semantics of the most interesting constructs are as follows:
Let Σ+ denote the set of all finite intervals.
Let Expressions denote the set of (integer or Boolean) expressions.
Let Val denote the set of integer or Boolean values (ℤ ∪ Bool).
Let E⟦…⟧( ) denote the meaning function from Expressions × Σ+ to Val.
Let Formulae denote the set of ITL formulae.
Let M⟦…⟧( ) denote the meaning function from Formulae × Σ+ to Bool (set of Boolean values,
{tt, ff}).
Let σ = σ0σ1… denote an interval.
We write σ ∼V  σ′ if the intervals σ and σ′ are identical with the possible exception of their mappings for
the variable V . 
Let choose-any-from(Val) denote the choice function that selects an arbitrary value from Val.
The formal semantics is listed in Table 2:
| E⟦z⟧(σ)                   | =  | z                                                                                            | ||||
| E⟦A⟧(σ)                    | =  | σ0(A)                                                                                                      | ||||
| E⟦ig(ie1,…,ien)⟧(σ)     | =  | ig(E⟦ie1⟧(σ),…, E⟦ien⟧(σ))                                                                            | ||||
| E⟦ A⟧(σ)                   | =  | 
 | ||||
| E⟦fin A⟧(σ)                | =  | σ|σ|(A)                                                                                                     | ||||
| E⟦b⟧(σ)                     | =  | b                                                                                            | ||||
| E⟦Q⟧(σ)                   | =  | σ0(Q)                                                                                                      | ||||
| E⟦bg(be1,…,ben)⟧(σ)    | =  | bg(E⟦be1⟧(σ),…, E⟦ben⟧(σ))                                                                           | ||||
| E⟦ Q⟧(σ)                  | =  | 
 | ||||
| E⟦fin Q⟧(σ)                | =  | σ|σ|(Q)                                                                                                    | ||||
| M⟦true⟧(σ)                 | =  | tt                                                                                                                                  | ||||
| M⟦h(e1,…,en)⟧(σ) = tt |  iff  | h(E⟦e1⟧(σ),…, E⟦en⟧(σ))                                                                               | ||||
| M⟦¬f⟧(σ) = tt             |  iff  | not (M⟦f⟧(σ) = tt)                                                                                       | ||||
| M⟦f1 ∧ f2⟧(σ) = tt      |  iff  | (M⟦f1⟧(σ) = tt) and (M⟦f2⟧(σ) = tt)                                                               | ||||
| M⟦skip⟧(σ) = tt             |  iff  | |σ| = 1                                                                                                     | ||||
| M⟦∀V  f⟧(σ) = tt         |  iff  | (for all σ′ s.t. σ ∼V  σ′, M⟦f⟧(σ′) = tt)                                                              | ||||
| M⟦f1 ; f2⟧(σ) = tt        |  iff  | |||||
|   (exists k, s.t. M⟦f1⟧(σ0…σk) = tt and M⟦f2⟧(σk…σ|σ|) = tt) | ||||||
| M⟦f∗⟧(σ) = tt              |  iff  | |||||
|   (exist l0,…,ln s.t. l0 = 0 and ln = |σ| and  | ||||||
|     for all 0 ≤ i < n,li < li+1 and M⟦f⟧(σli…σli+1) = tt) | ||||||