Some axioms for the first order case are shown in Table 16.
Let V denote a state variable.
We denote by f [e ∕ V ] that in formula f expression e is substituted for variable V .
ForallSub |
⊢ ∀V f ⊃ f [e ∕ V ], |
where the expression e has the same data |
|
and temporal type as the variable V and |
|
is free for V in f. |
|
ForallImplies |
⊢ ∀V (f1 ⊃ f2) ⊃ (f1 ⊃ ∀V f2), |
where V doesn’t occur freely in f1. |
|
SubstAxiom | ⊢ (V 1 = V 2) ⊃ f ≡ f [V 2 ∕ V 1]. |
ExistsChopRight |
⊢ ∃V (f1 ; f2) ⊃ (∃V f1) ; f2, |
where V doesn’t occur freely in f2. |
|
ExistsChopLeft |
⊢ ∃V (f1 ; f2) ⊃ f1 ; (∃V f2), |
where V doesn’t occur freely in f1. |
|
ForallGen |
⊢ f ⇒ ⊢ ∀V f, |
for any variable V . |
|