| ⊢ | f ≡if w then g else h ⇒ ⊢ f ≡if w then g else h | DiIfEqvRule | 
Proof:
| 1 | ⊢ f ≡if w then g else h                     | given                     | 
| 2  | ⊢ f ; true ≡if w then (g ; true) else (h ; true) | |
| 3  | ⊢  f ≡if w then  g else  h                  | 2, def. of           | 
qed