3 Fusion Logic

3.1 Syntax
3.2 Semantics

3.1 Syntax

Syntax of Fusion Logic [Slide 5]

State formulae:

W ::=
true | p | W1 W2 W

Future Transition formulae:

FT ::=
W | W | FT1 FT2 FT

Past Transition formulae:

PT ::=
W | W | PT1 PT2 PT

Future Fusion expressions:

FE ::=
test(W) |step(FT) | FE1 FE2 | FE1 ; FE2 | FE

Past Fusion expressions:

PE ::=
test(W) |pstep(PT) | PE1 PE2 | PE1 PE2 | PE

Fusion logic formulae:

FL ::=
true | p FL | FL1 FL2 | FL | FL |
FEFL | FLPE⟩| FL1 U FL2 | FL1 S FL2

3.2 Semantics

State [Slide 6]

A state is a mapping State from the set of propositional variables Varb to the set of Boolean values Bool {tt,}.

tt is the semantic ‘true’ value and ff the semantic ‘false’ value.

State : Varb Bool

We will use σ012,… to denote states and Σ to denote the set of all possible states.

Example 1. Let σ0 be a state such that

σ0(P) = tt
σ0(Q) =

Interval and Length [Slide 7]

An interval σ is a finite sequence of states, in [5] also infinite intervals are considered. The decision procedure can also handle infinite intervals.

σ : σ0σ1σ2

Let Σ+ denote the set of all possible finite intervals with at least one state.

The length of an interval σ is denoted by |σ| and is the number of states minus 1.

Example 2.

σ = σ0
|σ| = 0
σ = σ0σ1
|σ| = 1
σ = σ0σ1…σn
|σ| = n

Prefix, Suffix and Sub Interval [Slide 8]

Let σ = σ0σ1σ2 be an interval then

Example 3. Let σ = σ0σ1σ2σ3 be an interval then

σ0σ1
is a prefix interval of σ
σ1σ2σ3
is a suffix interval of σ
σ1σ2
is a sub interval of σ

Semantics of State Formula [Slide 9]

Let P⟦⟧() be the “meaning” function from ‘state formulae’ × Σ to {tt,} and let σ be a finite interval of one state then

Ptrue(σ)
=
tt
Pp(σ)
=
σ0(p)
P¬W(σ)
=
not PW(σ)
PW1 W2(σ)
=
PW1(σ) or PW2(σ)

Semantics of Transition formulae [Slide 10]

Let Tf⟦⟧() and Tp⟦⟧() be the “meaning” function from respectively ‘future transition formulae’ × Σ2 to {tt,} and ‘past transition formulae’ × Σ2 to {tt,} and let σ be a finite interval (σ Σ2) with two states then

future transitions:

Tf¬FT(σ)
=
not TfFT(σ)
TfFT1 FT2(σ)
=
TfFT1(σ) or TfFT2(σ)
TfW(σ)
=
PW(σ0)
Tf W(σ)
=
PW(σ1)

past transitions:

Tp¬PT(σ)
=
not TpPT(σ)
TpPT1 PT2(σ)
=
TpPT1(σ) or TpPT2(σ)
TpW(σ)
=
PW(σ1)
Tp W(σ)
=
PW(σ0)

Semantics of Future Fusion expressions [Slide 11]

Let E⟦⟧() be the “meaning” function from ‘future fusion expressions’ × Σ+ to {tt,} and let σ be a finite interval (σ Σ+) then

Etest(W)(σ)
=
PW(σ0) and |σ| = 0
Estep(FT)(σ)
=
TfFT(σ0…σ1) and |σ| = 1
EFE1 FE2(σ)
=
EFE1(σ) or EFE2(σ)
EFE1 ; FE2(σ) = tt
iff
exists a k, s.t. 0 k ≤|σ| and
EFE1(σ0…σk) = tt and
EFE 2(σk…σ|σ|) = tt
EFE(σ) = tt
iff
exist l0,…,ln s.t. l0 = 0 and ln = |σ| and
for all 0 j < n,lj < lj+1 and
EFE(σli…σlj+1) = tt

The semantics of ; and are the same as those of ITL

Semantics of Past Fusion expressions [Slide 12]

Let E⟦⟧() be the “meaning” function from ‘past fusion expressions’ × Σ+ to {tt,} and let σ be a finite interval (σ Σ+) then

Etest(W)(σ)
=
PW(σ0) and |σ| = 0
Epstep(PT)(σ)
=
TpPT(σ0…σ1) and |σ| = 1
EPE1 PE2(σ)
=
EPE1(σ) or EPE2(σ)
EPE1 PE2(σ) = tt
iff
exists a k, s.t. k i and
EPE1(σ0…σk) = tt and
EPE2(σk…σ|σ|) = tt
EPE(σ) = tt
iff
exist l0,…,ln s.t. l0 = 0 and ln = |σ| and
for all 0 j < n,lj < lj+1 and
EPE(σlj…σlj+1) = tt

The semantics of and are the same as ; and

Semantics of Fusion logic [Slide 13]

Let M⟦⟧ be the “meaning” function from ‘fusion logic formulae’ × Σ+ ×IN to {tt,} and let σ be a finite interval and i a natural number then

Mtrue(σ,i)
=
tt
Mp(σ,i)
=
σi(p)
M¬FL(σ,i) =
=
not MFL(σ,i)
MFL1 FL2(σ,i)
=
MFL1(σ,i) or MFL2(σ,i)
M FL(σ,i)
=
MFL(σ,i + 1) and i < |σ|
M FL(σ,i)
=
MFL(σ,i 1) and 0 < i

Semantics of Fusion logic [Slide 14]

MFEFL(σ,i) = tt
iff
exists a k, s.t. i k ≤|σ| and
EFE(σi…σk) = tt and
MFL(σ,k) = tt
MFLPE(σ,i) = tt
iff
exists a k, s.t. k i and
MFL(σ,k) = tt and
EPE(σk…σi) = tt
MFL1 U FL2(σ,i) = tt
iff
exists a k, s.t. i k ≤|σ| and
MFL2(σ,k) = tt and
for all i j < k,MFL1(σ,j) = tt
MFL1 S FL2(σ,i) = tt
iff
exists a k, s.t. k i and
MFL2(σ,k) = tt and
for all k < j i,MFL1(σ,j) = tt

non-strict U and S see [4]

Semantics of Fusion logic [Slide 15]

FEFL and FLPEare similar to ; and of [1]:

MFEFL(σ,i) = tt
iff
exists a k, s.t. i k ≤|σ| and
EFE(σi…σk) = tt and
MFL(σ,k) = tt
MFLPE(σ,i) = tt
iff
exists a k, s.t. k i and
MFL(σ,k) = tt and
EPE(σk…σi) = tt

MFL1 ; FL2(σ,i) = tt
iff
exists a k, s.t. i k ≤|σ| and
MFL1(σ0…σk,i) = tt and
MFL2(σ,k) = tt
MFL1 FL2(σ,i) = tt
iff
exists a k, s.t. k i and
MFL1(σ,k) = tt and
MFL2(σk…σ|σ|,i k) = tt

Difference of EFE(σi…σk) = tt is because FE is a future fusion expression and therefore can not refer to states before state σi

Difference of EPE(σk…σi) = tt is because PE is a past fusion expression and therefore can not refer to states after state σi

Derived operators [Slide 16]

Derived future Fusion expression operators

lener(0)
test(true)
lener(n + 1)
step(true) ; lener(n)
trueer
step(true)
moreer
step(true) ; trueer
erW
trueer ; test(W) ; trueer

Derived past Fusion expression operators

lenel(0)
test(true)
lenel(n + 1)
lenel(n) pstep(true)
trueel
pstep(true)
moreel
trueel pstep(true)
elW
trueel test(W) trueel

Derived operators [Slide 17]

Derived Boolean operators

FL1 FL2
¬(¬FL1 ∨¬FL2)
FL1 FL2
¬FL1 FL2
FL1 FL2
(FL1 FL2) (FL2 FL1)

Derived future Fusion logic operators

morer
true
emptyr
¬morer
lenr(0)
emptyr
lenr(n + 1)
step(true)lenr(n)
FL
true U FL
FL
¬(¬FL)
[FE]FL
¬(FE⟩¬FL)

Derived operators [Slide 18]

Derived past Fusion logic operators

morel
true
emptyl
¬morel
first
emptyl
lenl(0)
emptyl
lenl(n + 1)
lenl(n)pstep(true)
FL
true S FL
FL
¬(¬FL)
FL[PE]
¬(¬FLPE)
FL
FL
FL
FL

Satisfiable and valid [Slide 19]

2025-12-19
Contact | Home | ITL home | Course | Proofs | Algebra | FL
© 1996-2025