V.7 Semantics of Formulae

Semantics of formulae [Slide 161]

Let M() be the “meaning” function from Formulae × Σ+ to Bool (set of Boolean values, {tt,}) and let σ = σ0σ1 be an interval then

Mtrue(σ)
=
tt
Mh(e1,…,en)(σ) = tt
iff
h(Ee1(σ),…,Een(σ))
M¬f(σ) = tt
iff
not (Mf(σ) = tt)
Mf1 f2(σ) = tt
iff
(Mf1(σ) = tt) and
(Mf2(σ) = tt)
Mskip(σ) = tt
iff
|σ| = 1

Example [Slide 162]

Example 51.  

(M¬(Account < 0)(σ) = tt)
iff
not (MAccount < 0(σ) = tt)
iff
not (EAccount(σ) <E0(σ))
iff
not (σ0(Account) < 0)

Example 52.  

(MAccount = 50 In 0(σ) = tt)
iff
(MAccount = 50(σ) = tt) and (MIn 0(σ) = tt)
iff
(EAccount(σ) =E50(σ)) and (EIn(σ) E0(σ))
iff
σ0(Account) =50 and σ0(In) 0

Semantics of formulae [Slide 163]

Let σ V σ denote that the intervals σ and σare identical with the possible exception of the mapping for the variable V .

Example 53.  

Let σ and σbe intervals.

Then σ In σ.

Semantics of formulae [Slide 164]

The semantics of V f is defined in terms of σ V σ

MV f(σ) = tt
iff
(for all σs.t. σ V σ,Mf(σ) = tt)

Example 54.  

MIn In 0(σ) = tt
iff
(for all σs.t. σ In σ,MIn 0(σ) = tt)
iff
(for all σs.t. σ In σ0(In) 0)

Semantics of formulae [Slide 165]

The semantics of ‘chop’ is as follows Mf1 ; f2(σ) = tt iff

(exists k, s.t. Mf1(σ0…σk) = tt and Mf2(σk…σ|σ|) = tt)
 
|
f1
|
f2
|
σ0
σk
σ|σ|

Interval σ is a fusion of two intervals σ0…σk (satisfies f1) and σk…σ|σ| (satisfies f2). State σk is shared by both.

Semantics of formulae [Slide 166]

The semantics of ‘chopstar’ is as follows Mf(σ) = tt iff

  (exist l0,…,ln s.t. l0 = 0 and ln = |σ|and
  for all 0 i < n,li li+1 and Mf(σli…σli+1) = tt)
 
|
f
|
|
f
|
|
f
|
σ0
σl1
σli
σli+1
σln1
σ|σ|

Finite interval σ is the fusion of a finite number of finite sub-intervals each satisfying f.

2023-09-12
Contact | Home | ITL home | Course | Proofs | Algebra | FL
© 1996-2023