
Specifying Fault Tolerance within Stark’s Formalism∗
——improved version——

Antonio Cau Willem-Paul de Roever

Christian-Albrechts-Universität zu Kiel
Institut für Informatik und Praktische Mathematik†

D-24105 Kiel, Germany

Presented at the Twenty-Third Annual International Symposium on Fault-Tolerant

Computing, Toulouse, France, June 22-24, 1993.

Abstract

A general refinement methodology is presented based
on ideas of Stark, and it is explained how these can be
used for the systematic development of fault-tolerant
systems. Highlights are: (1) A comprehensive exposi-
tion of Stark’s temporal logic and development metho-
dology. (2) A formalization of a general systematic
approach to the development of fault-tolerant systems,
accomplishing increasing degrees of coverage with each
successive refinement stage. (3) A detailed example of
a multi-disk system providing stable storage, illustrat-
ing this general methodology.

1 Introduction

Current formal methods are far from solving the prob-
lems in software development. The simplest view of
the formal paradigm is that one starts with a formal
specification and subsequently decompose this speci-
fication in subspecifications which composed together
form a correct refinement. These subspecifications are
decomposed into “finer” subspecifications. This refine-
ment process is continued until one gets subspecifica-
tions for which an implementation can easily be given.
This view is too idealistic in a number of respects.

First of all, most specifications of software are wrong
and contain inconsistencies [10]. Secondly, writing a
correct specification is a process whose difficulty is
comparable with that of producing a correct implemen-
tation, and should therefore be structured, resulting in
a number of increasingly less abstract layers with speci-
fications which tend to increase in detail (and therefore
become less readable [9]). Thirdly, even an incorrect
refinement step may be useful in the sense that from
such a step one can easier derive the correct refine-
ment step. This is especially the case with intricate

∗Partially supported by ESPRIT project 6021 (REACT)
†E-Mail:{ac, wpr}@informatik.uni-kiel.d400.de

algorithms such as those concerning specific strategies
for solving the mutual exclusion problem, see [6]. An
formalization of the last has been given in [3].

In the present paper we present a formal develop-
ment strategy for deriving a correct refinement step
using incorrect intermediate stages and its application
to a fault tolerant system. The formal strategy is as
follows: one starts with an implementation for a spec-
ified fault tolerant system containing some faults, i.e.,
the refinement step is incorrect because of these faults.
In the next step we try to detect these faults, i.e., we
construct a layer upon the previous implementation
that on detection of an error caused by a fault, stops
that implementation, i.e., a fail-stop implementation.
The second implementation is better than the previ-
ous one because now at least the implementation stops
on detection of an error caused by a fault, but it is
still incorrect. In the third approximation we recover
these faults, i.e., we don’t stop anymore upon detec-
tion of an error but merely recover the error detected
by executing some special program that neutralizes the
damages caused by a fault. The third implementation
is correct under the assumption that certain conditions
are fulfilled.

We use Stark’s formalism in order to describe this
process of approximation. In this formalism a specifi-
cation is separated into a safety (machine) part and a
liveness (validity) part. The machine part is used by us
for describing the faulty implementation and the valid-
ity part for restricting the machine part to the correct
behavior of that implementation. It is this separation
that enables us to handle incorrect approximations: al-
though the machine part of the implementation doesn’t
refine the specification, the intersection of the machine
part and the validity part of the implementation does
refine the specification, indeed.

The paper is structured as follows: Section 2 con-
tains a a short introduction of Stark’s formalism (see [2]
for a more detailed introduction). Section 3 contains
the formal development of a fault tolerant system for
stable storage [4, 11]. Section 4 contains a conclusion.

rrr

brbrbr
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

b b b

�

�

�

q0

q1

q3

q2

e3

e2

e1

λ

t2t10

Events

States

Time

Time

: a state function

: an observation

Figure 1: Following computation is illustrated: the ini-
tial state is q0, on the occurrence of event e1 the state
changes in q1. Between time 0 and t1 only the uninter-
esting stuttering event λ occurs, so the state doesn’t
change until the next interesting event e2 occurs, and
so on.

2 Stark’s Formalism

In this section we present Stark’s Dense time Tempo-
ral Logic DTL for describing correct refinement steps
([12, 13] are not easily accessible) and our use of it to
describe incorrect refinement steps. In sect. 2.1 the se-
mantic notion of a computation is introduced, needed
for the semantics of DTL: it is a merge of an observa-
tion (when and which events occur) and a state func-
tion (when and which state changes occur) see fig. 1.
It is well know [1] that two kinds of properties can
be expressed about these computations: safety (local)
and liveness (global) properties. We use the first one
to describe the program that is developed till now and
the second one to describe the desirable computations
of that program (so undesirable computations are re-
moved). Furthermore we introduce the syntax of DTL
(based on [5]) in order to express these properties. In
Stark’s formalism the stuttering problem is solved in
an easy way and it is possible to express within this
logic what a correct refinement step is. In sect. 2.2 the
semantic notion of a correct refinement step is defined.
Three levels of set of allowed computations (intersec-
tion of our safety and liveness properties) are distin-
guished in order to express this refinement: the ab-
stract level, the concrete level and the composite level
that relates these two previous levels. In sect. 2.3 this
semantic refinement is expressed in DTL by two veri-
fication conditions. Furthermore it is shown how “in-

correct” refinement steps can be expressed in DTL.

2.1 DTL: semantics and syntax

In [12] a method for specifying reactive systems is in-
troduced. Such systems are assumed to be composed
of one or more modules. A module specifies the set
of allowed computations, i.e., it consists of two parts:
(1) the machine part for describing the safety (local)
properties and (2) the validity part for describing the
liveness (global, in our case the desired computations
of the machine) properties.

The formal definition of a machine M = (E,Q, I, T)
is as follows:
•E: is the interface of M , i.e., the set of possible
events. An event is an observable instantaneous oc-
currence during the operation of a machine, that can
be generated by that machine or its environment and
that is of interest at the given level of abstraction. E
always contains a λE-event which represents all, at that
level, uninteresting events. We model faults also with
events because a fault is an observable instantaneous
occurrence during the operation of a machine. It is
generated by the environment of the machine and is
of interest at our level of abstraction. Events labeled
with↓ are input events, and events labeled with↑ are
output events, and events without an arrow are inter-
nal events,
•Q: is the countably infinite set of states of M ; a state
is a function from the set of observable variables Var
and freeze variables F , with Var ∩ F = ∅, to the set
of values Val, i.e., Q : (Var ∪ F) → Val. Note: the
“normal” variables will be bold faced in order to dis-
tinguish them from freeze variables.
• I: a non-empty subset of Q, the set of initial states,
•T : the state-transition relation, T ⊆ Q×E×Q, such
that for all q ∈ Q the stuttering step 〈q, λE , q〉 ∈ T un-
der the condition that for all r, q ∈ Q 〈q, λE , r〉 ∈ T iff
r = q, i.e., λ-events can’t change a state. Furthermore
M is input-cooperative, i.e., in every state of M any
input event can be received.

An observation over interface E is a function obs
from [0,∞) to E, such that obs(t) 6= λ for at most
finitely many t ∈ [0,∞) in each bounded interval,
which means that in a bounded interval only a finite
number of interesting events can occur (the finite vari-
ability condition). Fig. 1 illustrates the notion of ob-
servation. At time 0 the event e1 occurs, at time t1
event e2, and at time t2 event e3; at all other moments
the λ event occurs.

A state function over a set of states Q is a func-
tion sf from [0,∞) to Q such that for all t ∈ [0,∞),
there exists εt > 0 such that sf is constant on intervals

2

(t − εt, t] ∩ [0,∞) and (t, t + εt]. We write sf (t←•) for
the value of the state just before and at time t (the
first interval) and write sf (t◦→) for the value of sf just
after time t (the second interval). Fig. 1 illustrates the
notion of state function. At time 0 the machine is in
state q0, in interval (0, t1] the machine is in state q1,
and so on.

A history over an interface E and a state set Q is
a pair h = 〈obs, sf 〉, where obs is an observation over
E, and sf a state function over Q. These two concepts
are related by the notion of computation of a machine
M . A computation of M intuitively expresses that an
observation and a state function fit together in that at
any moment of time t, any triple consisting of the state
just before and including t, the observation at t, and
the state just after t, belongs to the state transition
relation of M (see fig. 1). For a formal definition we
need the notion of step occurring at time t in h which is
defined as follows: step(t) = 〈sf (t←•), obs(t), sf (t◦→)〉.
Let Hist(E,Q) denote the set of all histories over in-
terface E and state set Q. A computation of a machine
M is a history h st: sf (0) ∈ I and step(t) ∈ T for all
t ∈ [0,∞). Comp(M) denotes the set of all computa-
tions of M , and ReaM the set of reachable states of
M .

The validity part of a module is just a set of compu-
tations.

Till now we have only a semantic notion of machine
and validity. We now present the syntax for expressing
these two parts.

Syntax:
variables are elements of V ar;
values of variables are elements of V al;
freeze variables are elements of F ; F ∩ V ar = ∅;
events are elements of interface E;
special symbol e;
event term e = f where f is an event;
state terms x and x′ where x is an element of V ar,
denoting the current state, and x′ is the “immediately
after” state (′ denotes the “immediately after” tempo-
ral operator);
terms can be event terms, state terms, freeze variables
or function symbols ;
quantification over freeze variables using ∀,∃;
formulae are built from terms, and relation symbols
using boolean connectives, quantification and
temporal operators 2, 3

Examples:
(x = 0 ∧ e = d0)→ x′ = 1 (a state-transition),
2x > 0 (a safety property),
and 2(x = 0→ 3x > 0) (a liveness property).

Semantics:
We take as semantic model histories. Let history h
be defined as follow h

.
= 〈obs, sf〉. Let h(τ) denote the

history λt.h(t+ τ).
For all freeze variables v ∈ F , v(h) = sf(0)(v). (Note:
because v is a freeze variable the value doesn’t change
in a history, at time 0 it is initialized.)
For all variables v ∈ V ar, v(h) = sf(0)(v).
For all variables v ∈ V ar, v′(h) = sf(0◦→)(v).
For e , e(h) = obs(0).
For f with interpretation f , and t1, . . . , tn are terms,
f(t1, . . . , tn)(h) =f(t1(h), . . . , tn(h)).
h |= R(t1, . . . , tn) if R is the interpretation of R, and
t1, . . . , tn are terms, and R(t1(h), . . . , tn(h)) holds;
h |= ¬ϕ if h 6|= ϕ;
h |= ϕ→ ψ if h |= ¬ϕ or h |= ψ;
h |= ∃x.ϕ if there exists an assignment sf0(0) differing
from sf (0) only in the value assigned to freeze variable
x such that 〈obs, sf0〉 |= ϕ;
h |= 3ϕ; if there exists an t ∈ [0,∞) st h(t) |= ϕ;
h |= 2ϕ; if for all t ∈ [0,∞) h(t) |= ϕ;

The initial states and the transition relation of a ma-
chine can and will be from now on be expressed as
DTL formulae. The enabling condition of an event
in a machine M , denoted by EnM (e) is the precondi-
tion of the transition that corresponds with that event.
The local properties of a module Z can now be ex-
pressed by formula IZ ∧2TZ . Thus Comp(MZ)

.
= {h ∈

Hist(EZ , QZ) | h |= IZ ∧ 2TZ}. The liveness proper-
ties can now be added, expressed by some extra DTL
formula VZ , the validity condition. The complete be-
havior of module Z is the following set of histories:
{h ∈ Comp(MZ) | h |= VZ}, and is described by DTL
formula IZ ∧2TZ ∧ VZ .

2.2 Semantical refinement

In Stark’s view there are three kinds of roles a mod-
ule can play during a refinement step. The first one
is that of an abstract module -then it serves as a high
level specification of a system. The second one is that
of a concrete one, serving as a lower level specification
of a system component. A concrete module may be-
come an abstract module in the next refinement step.
The third one is that of a composite one, defined as
the Cartesian product of the abstract module and the
concrete modules, and used as a device for defining a
refinement mapping between the abstract module and
the parallel composition of the concrete modules for
that development step. The interface of the composite
module is the Cartesian product of the interface of the
abstract module and that of the concrete modules.

3

To specify a refinement step of a system one there-
fore needs an abstract module, a composite module
and one or more concrete modules. An interconnec-
tion relates these modules with each other, i.e., it re-
lates both interface E of the composite module with
interface A of the abstract module, and interface E of
the composite module with each of the interfaces Fi of
the concrete modules. Hence it characterizes a refine-
ment relation between an abstract module and a set
of concrete modules. It defines which event on the ab-
stract level is implemented by events on the concrete
level.

Define the composite interface as E
.
= A×

∏
j∈J Fj

and λE
.
= 〈λA, 〈λj〉j∈J〉. The interconnection I is a

pair 〈α, 〈δj〉j∈J〉 where:
•α denotes a function from the composite interface
E to the abstract interface A such that α(λE) = λA
holds; α is called an abstraction function.
• δj denotes a function from the composite interface
E to the concrete interface Fj such that δj(λE) = λj
holds; δj is called a decomposition function.

So intuitively the requirement about both α and the
δj ’s is that uninteresting events of the composite mod-
ule are not turned into interesting events of the ab-
stract or concrete modules. The definition of intercon-
nection can easily be extended to (hold between the)
computations of the mentioned modules.

Let BA denote the set of allowed computations of
the abstract module. and Bj denote that of concrete
module j. A refinement step is defined as a triple
〈I, BA, 〈Bj〉j∈J〉 where I is the interconnection (be-
tween computations), A refinement step is correct if
the following holds:

⋂
j∈J δ

−1
j (Bj) ⊆ α−1(BA)

2.3 (In)correct refinement in DTL

With every kind of module we can associate a machine
-whether abstract, concrete or composite. For concrete
and abstract modules this is obvious, but how is this
done for a composite module? First we assume that
the sets of states of the abstract and the concrete ma-
chines are disjoint. So every machine has its own set of
states. If we have an abstract machine MA, described
by temporal formula IA∧2TA, concrete machines Mj ,
described by temporal formula Ij∧2Tj , and if we have
furthermore an interconnection I = 〈α, 〈δj〉j∈J〉 that
links both kinds of machines, then we can construct
the composite machine M = (E,Q, I, T) as follows:
•E .

= A×
∏
j∈J Fj ;

•Q .
= QA ×

∏
j∈J Qj , and I

.
= IA ∧

∧
j∈J Ij ;

• In order to express the state-transition relation T we
must use the definitions of α and the δj ’s to transform
event terms in TA and Tj into event terms of T . Event

term e = d in TA is transformed into e = α−1(d) and
event term e = f in Tj into e = δ−1j (f). We intro-

duce the following notation: [f]α
.
= f [α−1(e)/e] for

e ∈ A and [f]δj
.
= f [δ−1j (e)/e] for e ∈ Fj . Then the

state-transition relation T of M is defined as follows:
T
.
= 2([TA]α ∧

∧
j∈J [Tj]δj).

The correctness condition of the refinement step, as
seen above, is as follows:⋂

j∈J δ
−1
j (Bj) ⊆ α−1(BA).

Following DTL formula expresses this condition:∧
j∈J [Ij ∧2Tj ∧ Vj]δj → [IA ∧2TA ∧ VA]α

Due to the separation of the allowed behavior into
a machine part (a pure safety DTL formula) and a va-
lidity part (a pure liveness DTL formula), see [1] for
an explanation of pure safety and pure liveness, we
can split this verification condition into two verifica-
tion conditions. One for machines and one for validity
conditions:
• maximality: any event that can be generated by the
system of concrete machines can also be performed by
the abstract machine, i.e.,

∀e ∈ E.(Reac ∧
∧
j∈J Enc(δj(e)))→ Enc(α(e))

where Reac is a condition that checks if a state of
the composite machine is reachable, Enc(δj(e)) is the
enabling condition of event δj(e) of machine j, and
Enc(α(e)) is the enabling condition of event α(e) of
the abstract machine.
• validity: any allowed computation of each concrete
machine corresponds with an allowed computation of
the abstract machine, i.e.,

Comp(Mc) |= (
∧
j∈I [Vj]δj)→ [VA]α

where Vj is the validity condition of module j, and VA
is the validity condition of the abstract module.

Next we explain how to describe relative correct re-
finement steps in the development of a program, as
promised in sect. 1. Well, as said before, instead of
using the validity condition for expressing a liveness
condition, we use it for characterizing the correct com-
putations of a machine. Now in general that latter con-
dition is not a pure liveness condition. Furthermore,
since the machine part describes the implementation
as developed until now, it contains in general also the
unallowed computations. But since the total specifi-
cation is the intersection of the machine part and the
validity part, the total specification is still relatively
correct. More formally:
Let the abstract specification be IA∧2TA∧VA, where
VA is a pure liveness condition, i.e., the machine part
of the abstract specification doesn’t characterize unal-
lowed computations. Let each concrete specification be
Ij ∧2Tj ∧Pj ∧Lj where Pj is the part that character-
izes the allowed computations of the machine part and
Lj is the pure liveness part, i.e., the validity condition

4

has been split up into Pj and Lj . In the stable stor-
age example of the next section the Pj part is always a
safety condition that disallows certain transition of Tj
from being taken. This allows us to express the relative
correctness of a refinement step as follows:
For correctness we have to prove, as seen above,∧
j∈J [Ij ∧2Tj ∧ Pj ∧ Lj]δj → [IA ∧2TA ∧ VA]α.

Because (1) both Pj and Tj are safety conditions, (2)
the conjunction of two safety conditions is again a
safety condition, and (3) Pj disallows certain transi-
tions of Tj from being taken, 2Tj ∧ Pj can be trans-
formed into 2Tnewj , which is also expressed as a
safety condition. Note: Tnewj is a new transition re-
lation. So we get the following:∧
j∈J [Ij ∧2Tnewj ∧ Lj]δj → [IA ∧2TA ∧ VA]α.

This form allows one to use Stark’s two verification
conditions, because Tnewj is a pure safety condition
and Lj a pure liveness condition.

3 Relative refinement in fault tolerance

In this chapter we first introduce in sect. 3.1 a general
methodology for proving fault tolerant systems correct.
This general methodology uses the relative refinement
concept of sect. 2.3. The remaining sections of this
chapter give an illustration of this general methodol-
ogy by applying it to a fault tolerant system consisting
of a number of disks implementing stable storage. Sec-
tion 3.2 introduces this application. In sections 3.3,
3.4, 3.5 and 3.6 the four steps of this general method-
ology are applied to the stable storage example [4, 11].

3.1 The General Methodology

The general methodology consists of four steps. In the
first step we give the abstract specification A (a DTL
formula) of the fault tolerant system. In this specifica-
tion no faults are visible, hence don’t occur as observ-
ables. The designer’s task is to give an implementation
of this system under the assumption that only faults
from certain classes can occur. These faults are called
anticipated faults. These are faults which may affect
the implementation in that they may give rise to er-
rors in the state of the implementation, resulting sub-
sequently in failures of that implementation. In step
2,3 and 4 of the methodology a fault-tolerant imple-
mentation is developed.

The second step of the general methodology, iden-
tifies the anticipated faults which can affect an imple-
mentation P . This implementation serves as first ap-
proximation to the final implementation ofA. It should
be clear that P is not a refinement of A because of the
possible occurrences of anticipated faults. P is only a

refinement when these faults do not occur, i.e., P is
a relative refinement of A. We have seen in sect. 2.3
that this relative refinement step can expressed using
ordinary refinement, i.e., P ∧ ¬FO is a refinement of
A where ¬FO expresses that these anticipated faults
never occur. So in step 2 the proof obligation is:
(1) [P ∧ ¬FO]δP → [A]α.
Where δP and α are respectively the decomposition
and abstraction function needed for expressing this re-
finement.

In the third step of our development one specifies
how these anticipated faults are detected, i.e., one has
to specify a detection layer Dfs for these faults. This
layer is added in bottom-up fashion to the implemen-
tation P of the second step and stops upon detection of
the first error, i.e., Dfs is a fail-stop implementation.
So the second approximation to the final implemen-
tation consists of the parallel composition of P and
Dfs. This approximation is clearly not a refinement
because when in P a fault occurs, and Dfs detects the
corresponding error, the whole approximation stops.
One would like to have (eventually) an approximation
that doesn’t stop. This means that one must consider
P ∧ ¬FO instead of P . But then also Dfs should de-
tect no error because if it detects an error and the fact
that no corresponding fault has occurred the detection
layer is not “correct”. So P‖Dfs is a relative refine-
ment of A can be described by the following ordinary
refinement:
(2) ([(P ∧ ¬FO)]δP ∧ [Dfs ∧ ¬ED)]δDfs

)→ [A]α.

Where δP , δDfs
and α are respectively the decompo-

sition and abstraction functions needed for expressing
this refinement. Here ¬ED expresses that no errors
are detected.
Proof of (2): Assume left-hand side holds. Then if
ED → FO (in general a mathematical theorem of
cyclic redundancy coding) holds then [P ∧ ¬FO]δP
holds. Using (1) one then infers [A]α. 2

In the fourth step of our development one specifies
the corrective action to be undertaken after detection
of an error. This means in general that one needs re-
dundancy, i.e., several copies of P and D components,
because when a detection layer D detects an error, the
state before that error has to be recovered and that can
only be done by accessing another copy of P through
its corresponding detection layer D. Note that the D
component doesn’t stop anymore on the detection of
an error but merely waits for the corrective action to be
undertaken. Say, we need N copies of P and D. The fi-
nal implementation is then as follows: ‖Nj=1(P j‖Dj)‖R
where R is the error recovery layer. This implementa-
tion is correct if following refinement holds:
(3) (

∧N
j=1([P j]δPj ∧ [Dj]δDj) ∧ [R ∧RC]δR)→ [A]α.

5

Here RC is a global restriction on the kind of faults
that can be recovered.
Proof of (3): Assume left-hand side holds. There are
two cases (I) no faults or (II) faults occur.

(I): then left-hand side of (3) rewrites to
∧N
j=1([P j ∧

¬FO]δPj ∧ [Dj]δDj
) ∧ [R ∧RC]δR . Under the assump-

tion that ¬FO → ¬ED holds one infers
∧N
j=1([P j ∧

¬FO]δPj ∧ [Dj ∧ ¬ED]δDj) ∧ [R ∧RC]δR . Since R ac-
cesses the first non-faulty P component, and no error
detected means no recovery, one infers [P 1∧¬FO]δP ∧
[D1

fs ∧ ¬ED]δDfs
. Using the result of (2) one infers

that [A]α holds.
(II): Let P l be the first non-faulty component that the
error-recovery componentR finds (we assume that such
a component can always be found) and thus the first
l − 1 P components are affected by faults. Let Y de-
note

∧N
j=l+1([P j]δPj ∧ [Dj]δDj)∧ [R∧RC]δR then left-

hand side of (3) rewrites to
∧l−1
j=1([P j ∧FO]δPj ∧ [P l ∧

¬FO]δ
Pl
∧ Y . The first l− 1 P components can be af-

fected by either a recoverable fault or a non-recoverable
fault. Let k be the index of the component under con-
sideration (initially k = l − 1) and let rep be the set
of repaired components (initially rep = {l}). Then use
following inductive scheme:
(∗) Consider component P k: In case that P k is af-
fected by a recoverable fault P kis repaired using the
correct information of P l (we assume that this correc-
tion doesn’t introduce new faults) so rep := rep∪ {k}.
In case P k is affected by a non-recoverable fault then
P k will be “disabled”. Now

∧k−1
j=1 ([P j ∧ FO]δPj ∧∧

j∈rep[P
j∧¬FO]δPj ∧Y holds. If k > 1 then k := k−1

and proceed as (∗) above else end of scheme.
At the end of the above scheme

∧
j∈rep[P

j∧¬FO]δPj ∧
Y holds. Since this is a special case of (I) we can infer
that [A]α holds. 2

This ends our exposition of the general methodol-
ogy. In the next sections this methodology will be ap-
plied to a stable storage example.

3.2 Application: Introduction

Stable storage is defined as follows. A disk is used to
store and retrieve data. During these operations some
faults can occur in the underlying hardware. To make
the disk more reliable one introduces layers for the de-
tection and correction of errors, due to these faults.
The system with these detection and correction layers
is called “stable storage”. This stable storage is a fault
tolerant system because it stores and retrieves data in
a reliable way under the assumption that faults from
a certain class are recovered (corrected). This class
consists of two kinds of faults. The first one consists

of faults that damage the disk surface -the contents of
the disk are said to be corrupted by these faults. The
second one consists of faults that affect the disk control
system, and results into the contents of the disk being
read from or written to the wrong location. Notice that
other kinds of faults, such as power failure or physical
destruction of the whole stable storage system, are not
taken into account. I.e., stable storage should function
correctly provided such latter faults do not occur.

3.3 First step: Stable storage

In step 1, as seen in sect. 3.1, the abstract specification
A of a stable storage system is given, i.e., the system
as we ideally would like it to look like: no faults are
observed. If they occur internally, they should be re-
paired by the system without leaving any observable
trace. For that is the meaning of ‘stable’ here!

Specification The abstract specification of stable
storage specifies the following: The user signals with
an request event that he wants to read the contents
of some location of a medium for stable storage. This
medium then responds by sending the requested con-
tents. The user can also signal with a write event that
some data have to be written on some location of the
medium. Note: we have a very simple stable storage
medium that can handle only one request at a time.
If the user requests the contents of location before the
stable storage medium has responded to a previous re-
quest then our stable storage medium will get into the
error state and will not respond anymore to any request
from the user. We specify this medium by a machine
M (and V-set V) which is in this case rather simple
because this is an idealized machine with no faults.
It only ensures that the user and the stable storage
medium communicate with each other correctly. The
specification A

.
= M ∧ V where M and V are specified

below::
1. Events:
E : {r(sn)↓, s(c)↑,w(sn,c)↓: sn ∈ SN ∧ c ∈ DA}
where SN is the set of sector numbers and DA is the
set of information items that could be stored and re-
trieved by stable storage but that will not be further
specified.
r(sn): a request to read sector sn. s(c): the response to
the previous request where c are the contents of sector
sn. w(sn,c): write information item c onto sector sn.
2. States:
Q : ({S[i] : i ∈ SN} → DA)× (s : {idle, retr, error})

×(sb : SN)
S[i] = vi : sector i contains information item vi; s
stands for stable storage state, i.e., describes the cur-
rent state of stable storage as follows: s = idle: stable

6

storage is waiting for an event to occur, s = retr: the
user has requested some contents of stable storage and
stable storage is retrieving them, s = error: the user
has requested the contents of a location before stable
storage has responded to a previous request. Variable
sb is used to store the current sector from which the
user has requested the contents.
3. Initial States:
I
.
= ∀i ∈ SN.S[i] = dflt ∧ s = idle

Where dflt ∈ DA is some default information item.
Stable storage is waiting for an event to occur and each
location (sector) of stable storage contains some de-
fault information item.
4. Transitions:
Figure 2 illustrates the transitions of stable storage, in
a notion reminiscent of Harel’s Statecharts [7]. Note:
in this figure transitions of the form e[c]/a occur, where
e is an event, c a condition and a an action. For ex-
ample r(sn)↓ /sb′ = sn (condition c is here true). The
meaning of this transition is that when event r(sn) oc-
curs variable sb gets as new value sn. The ′ is the
“immediately after” temporal operator of DTL. So in
state s = retr the value of bf equals sn.

-
�-

�
�
�
�

�
�
�
�

�
�
�
�

6

?w(sn,c)↓ /S[sn]′ = c

r(sn)↓ /sb′ = sn

r(sn)↓ or

w(sn,c)↓

s = error

s = retrs = idle

s(S[sb])↑

Figure 2: Transitions of Stable Storage

5. Validity condition:
The condition that our stable storage medium can (and
eventually will) only handle one request at a time is
expressed by the the validity condition V

.
= R → G.

Where the rely condition
R
.
= 2(s = retr→ (e 6= r(sn) ∧ e 6= w(sn,c)))

expresses that the user will never generate the request
and write events before the stable storage medium has
responded to an earlier request. And the guarantee
condition
G

.
= 2(e = r(sn)→ 3e = s(S[sn]))

expresses that when the user requests the contents from
some sector, the stable storage medium guarantees that
the user eventually gets these contents.

3.4 Second step: Physical disk

In this step, which is the first stage in our task to de-
velop a fault tolerant system, we give the specification

of a physical disk. This specification is a first approxi-
mation to our fault tolerant system, i.e., it acts as the
undecorated basic layer of our desired implementation.
In this specification we must specify which are the an-
ticipated faults of our system, i.e., we have to specify
which faults are the focus of our interest that could
affect a physical disk. These faults are represented in
our formalism as events.

Specification We must specify a physical disk, the
anticipated faults and their impact on the physical
disk. We take as anticipated faults the following ones
(cf. [4, 11]):
• Damages of the disk surface causing corruption of
the contents of a physical sector.
• Disk control faults causing the contents of a partic-
ular physical sector to be read from or written to a
wrong location.
These faults are described using two events generated
by the adverse environment as is done in [4]: the dam
event, standing for the fault expressing damage to the
disk surface and the csf event standing for a fault in
the disk control system.

In analogy to the specification of stable storage, the
user signals with an rP(pn) event that it wants to read
the contents of physical sector pn. The physical disk
then signals with an sP(c) event that it has retrieved
the contents from this location. With an wP(pn,c)
event the user signals that the physical disk has to
store information item c onto sector pn. Because sta-
ble storage can handle only one request at a time, we
take a physical disk with the same feature. The formal
specification is P

.
= MP ∧ VP where MP and VP are

defined as follows:
1. Events:
EP = {rP(pn)↓, sP(c)↑,wP(pn,c)↓, csf(pn)↓,

dam(pn)↓: pn ∈ PN ∧ c ∈ PHY}
where PN is the set of Physical sector Numbers and
PHY the set of information items that can be stored
and retrieved by the PHYsical disk.
rP(pn): the request to read the contents of physical
sector pn. sP(c): the response to the previous re-
quest where c are the contents from physical sector
pn. wP(pn,c): write information item c onto physical
sector pn.
2. States:
We must somehow model how the anticipated faults
can affect the disk. Therefore we introduce array C to
model the effect of an csf event. C is a mapping from
sector numbers to sector numbers. The initial value of
C is the identity mapping. When a csf event occurs
a sector number will be remapped to another sector
number. So the physical disk will retrieve the contents

7

from the location mapped into by C. To describe the
effect of an dam event we introduce array P which is
a mapping from sector numbers to set of information
items that can be stored on a sector plus a special in-
formation item cd indicating that the sector contains
corrupted data. As in the specification of stable stor-
age we also need a variable p indicating the current
state of the physical disk and a variable pb for storing
the current physical sector number. More formally:
QP : ({P[i] : i ∈ PN} → PHY ∪ {cd})× (pb : PN)
×({C[i] : i ∈ PN} → PN)× (p : {idle, retr, error})

C[i] = j: the control system maps sector i to sector
j. P[i] = vi : physical sector i contains information
item vi. p = idle: the physical disk is waiting for an
event to occur. p = retr: the user has requested some
contents of the physical disk and the physical disk is
currently retrieving them. p = error: the user has re-
quested the contents of a location before the physical
disk has responded to a previous request.
3. Initial States:
IP

.
= ∀i ∈ PN.(P[i] = dflt ∧C[i] = i) ∧ p = idle

All sectors contain the default data item dflt and the
control system has not been affected by control system
fault.
4. Transitions:
Figure 3 illustrates the transitions of the physical disk.

-
�-

�
�
�
�

�
�
�
�

�
�
�
�

6

�

�

?wP(pn,c)↓ /P[C[pn]]′ = c

or fault

rP(pn)↓ /pb′ = pn

rP(pn)↓ or

wP(pn,c)↓

p = error

p = retrp = idle

sP(P[C[pb]])↑

fault

fault

Figure 3: Transitions of the physical disk, where
fault stands for (csf(pn)↓ /C′[pn] = j)

or (dam(pn)↓ /P′[pn] = cd),
for some j ∈ PN.

5. Validity condition:
The validity condition is defined as VP

.
= RP → GP

where the rely condition
RP

.
= 2(p = retr→ (e 6= rP(pn) ∧ e 6= wP(pn,c)))

expresses that the user never generates the request and
write events before the physical disk has responded to
a previous request. And the guarantee condition
GP

.
= 2(e = rP(pn)→ 3e = sP(P[C[pn]]))

expresses that the physical disk then guarantees that
the user eventually will get a response to a request.

Correctness As seen in sect. 3.1 one must define
the condition ¬FO that expresses that the anticipated

faults never occur, i.e.,
¬FO .

= 2(e 6= dam(pn) ∧ e 6= csf(pn)).
For correctness of relative refinement one has to prove
cf. sect. 3.1 [P ∧ ¬FO]δP → [A]α.

The proof goes intuitively as indicated in section 2.3,
i.e., ¬FO and 2TP (the DTL formula corresponding
to fig. 3) are taken together resulting in a new state-
transition relation which is the same as fig. 3 except
that the fault transitions are removed. Comparing this
new state-transition relation with that of T (the DTL
formula corresponding to fig. 2) shows that these are
the same except that states and events have another
name.

3.5 Third Step: Detection layer

In this step, the second stage in our development of
stable storage, we specify the layer that detects the
faults that we assumed could affect the physical disk;
this layer is added in bottom-up fashion to the physical
disk specified in section 3.4. The detection layer acts as
a sort of “interface” between the user and the physical
disk. It stops the machine when an anticipated fault
is detected by the detection mechanism, i.e., the whole
system (detection layer plus physical disk) stops when
such a fault occurs. This is called a fail-stop implemen-
tation [8]. It also informs the user which kind of an-
ticipated fault has occurred. As seen above, there are
two classes of anticipated faults. Consequently there
are two kinds of detection mechanisms. The first one
checks whether the contents read from the physical disk
are corrupted, i.e., detects errors due to damage of the
disk surface. The second one checks whether the con-
tents read from the physical disk originate from the
right location.

Specification The detection layer consists of three
parts: the first part detects the disk surface errors us-
ing a cyclic redundancy check (CRC) mechanism [8].
The second part detects the control system errors us-
ing an address checking (ADR) mechanism [8]. The
third part prevents further access by the user of the
physical disk when one of these two mechanisms de-
tects a fault by having the detection layer act as “in-
terface” between the user and the physical disk; the
detection layer refuses to communicate with the user
and the physical disk when such faults occur. Further-
more this part gives a message to inform the user which
anticipated fault has occurred.

The protocol of this interface between user and
physical disk is as follows. If the user wants to read
the contents of some physical sector it generates an rD
event for the detection disk layer (the interface). This
layer generates after receipt of this event an rP event.

8

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�- - -

��
���

���
��� ?

HH
H

HH
H

HH
HHY

?

6

-
d = idle d = retrd d = retrp d = stop1

d = sent d = stopd = write

rD(ln)↓ /lb′ = ln rP(LS[lb])↑

ok

error

sD(msg)↑
sD(msg)↑

uwritedwrite

Figure 4: Transitions of the detection layer where
ok stands for sP(c)↓ [CC(c) ∧AC(CD(c),LS[lb]))]/msg′ = AD(CD(c))) and
error stands for sP(c)↓ [CC(c) ∧ ¬AC(CD(c),LS[lb]))]/msg′ = DCSF or sP(c)↓ [¬CC(c)]/msg′ = DSDF and
uwrite stands for wD(ln,d1)↓ /pb′, lb′ = CE(AE(ln,d1)),ln and dwrite stands for wP(LS[lb],pb)↑

That event is received by the physical disk. The phys-
ical disk then signals with an sP event to the detection
layer that it has retrieved the contents of that physical
sector, upon which the detection layer signals with an
sL event to the user that the contents are retrieved.
The same holds mut. mut. for the writing of data
onto the physical disk. We also introduce logical sector
numbers; these logical sector numbers will be needed
in the fourth step, but we give them already here, i.e.,
when the detection layer detects that data from a phys-
ical sector number is affected by a disk surface dam-
age fault, the correct data will be written to another
physical sector number. In order to retrieve these con-
tents from this new location logical sector numbers are
introduced. When contents are stored at a new phys-
ical sector the logical sector number will be pointing
to this new sector. So actually the data are retrieved
from their logical sector (number). In this section how-
ever, the mapping between the logical sector numbers
and the physical sector numbers will be the identity
mapping because they are not needed here. The spec-
ification of detection layer Dfs

.
= MDfs

∧ VDfs
is not

given in full detail. Of MDfs
only the transitions are

given in fig. 4 where CC is used to check whether crc
encoded data from the physical disk is damaged by a
disk surface fault, and CD and CE are the crc-decode
and -encode functions, and AC is used to check whether
data is read from the correct physical location, and AD
and AE are the address-decode and -encode functions.
correctness As seen in sect. 3.1 one needs the condi-
tion ¬ED that expresses that no errors are detected.
This condition is defined as follows:
¬ED .

= 2(CC(P[LS[ln]])↔ P[LS[ln]] 6= cd
∧AC(CD(P[LS[ln]]),LS[ln]))
↔ C[LS[ln]] = LS[ln]). It prevents that

the error-branch in fig. 4 will be taken.

3.6 Fourth step: Error recovery layer

In this step we specify the error recovery layer. This
is the layer that tries to correct the errors detected
by the detection layer. The technique we use for er-
ror recovery is that of the mirrored disk concept [8].
This mirrored disk concept is as follows: instead of
one physical disk and corresponding detection layer,
we maintain N physical disks with identical contents
and N corresponding detection layers (N > 1). In case
some information can no longer be retrieved from one
disk, the information is still available on another one.
The user requests some contents from the error recov-
ery layer. The error recovery layer selects a disk from
which it can retrieve these contents. Then it requests
these contents from the corresponding detection layer
of that disk. The detection layer requests the contents
from the physical disk and checks whether the contents
are correct. The detection layer signals if the contents
are correct and, if not, it will signal which error it has
detected. If the contents are correct the error recovery
layer will send them to the user and is then ready for
new requests from the user. As seen before the detec-
tion layer can detect two kinds of errors. The error
recovery layer will react as follows on these errors:
ad (1) First, the error recovery layer selects another
disk from which it can retrieve the requested contents
and, when the corresponding detection layer signals
that the contents are correct, the error recovery layer
writes these contents to another location of the affected
disk. In order to retrieve these contents from this new
location logical locations are introduced. When con-
tents are stored at a new physical location the logical
location will be pointing to this new location. So actu-
ally the data are retrieved from their logical location.
Subsequently, the error recovery layer sends the con-
tents to the user and is ready to receive new requests
from the user. When the detection-layer of the second
disk also reports an error, the error recovery layer will

9

react as described in ad(1) and ad(2) depending on the
kind of error detected.
ad (2) First, the error recovery layer disables the faulty
disk and next it selects another disk from which it can
retrieve the requested contents; when the correspond-
ing detection layer signals that the contents are cor-
rect, the error recovery layer will pass them on to the
user. When the detection-layer of the second disk also
reports an error the error recovery layer reacts as de-
scribed in ad(1) and ad(2) depending on the kind of
error detected.
This error recovery process only works if we make the
following assumptions:
(I) In order to store the contents on a new physical
location enough spare locations should be available on
an affected disk.
(II) Furthermore, the following must always hold in
order to recover the ad(1)-type of error on a disk or
to retrieve the contents from a logical location: for all
logical locations there exists at least one non-disabled
physical disk that has correct data stored on that logi-
cal location. This condition guarantees that, each log-
ical location contains correct data (on which disk we
don’t know, but it is a non-disabled one and it is not
a disk whose type 1 error has to be repaired).
The formal specification of the error-recovery layer is
omitted.
Correctness As seen above the error recovery process
is only correct under certain restriction on the occur-
rence of faults. Computations in which the error recov-
ery process doesn’t work are: computations in which a
physical disk has an error of type 1 and has no spare
locations to store the correct contents, or in which a
disk has an type 1 error and all the other disks are
disabled. Thus condition RC is as follows
RC

.
= 2(∃i ∈ Ena.CCi(P[LS[ln]])

∧AC(CD(P[LS[ln]]), ln))
This expresses that for all logical sector numbers there
exists a non-disabled disk that has correct data stored
on that logical sector. The condition that there are
enough spare locations will be included in the condi-
tion ¬ED of the detection layers because we have made
the design decision that the detection layer is respon-
sible for finding the spare sectors.

4 Conclusion

In this paper we have shown that it is possible to for-
mally specify the development of a fault tolerant sys-
tem. We have used Stark’s formalism in a special way
in order to achieve this. The part originally intended to
specify liveness properties is used for deletion of faulty
and undesirable computations and the part originally

intended to specify safety properties is used for the till
now developed (possible faulty) implementation. This
enabled us to prove relative refinement of a specifica-
tion, i.e., the intersection of both parts of the imple-
mentation is a refinement, indeed.

Acknowledgements

We would like to thank Henk Schepers, Ruurd Kuiper,
Amir Pnueli and all anonymous referees for their com-
ments.

References

1. B. Alpern and F. Schneider. Defining liveness. Infor-
mation Processing Letters, 21(4):181–185, 1985.

2. A. Cau and W.-P. de Roever. Using relative refinement
for fault tolerance. In Proc. of FME’93 symposium:
industrial strength formal methods, 1993.

3. A. Cau, R. Kuiper, and W.-P. de Roever. Formalising
Dijkstra’s development strategy within Stark’s formal-
ism. In C. B. Jones, R. C. Shaw, and T. Denvir, editors,
Proc. 5th. BCS-FACS Refinement Workshop, 1992.

4. F. Cristian. A rigorous approach to fault-tolerant
programming. IEEE Trans. on Software Engineering,
11(1):23–31, 1985.

5. E. Diepstraten and R. Kuiper. Abadi & Lamport and
Stark: towards a proof theory for stuttering, dense do-
mains and refinements mappings. In LNCS 430:Proc.
of the REX Workshop on Stepwise Refinement of Dis-
tributed Systems, Models, Formalisms, Correctness,
pages 208–238. Springer-Verlag, 1990.

6. E. Dijkstra. A tutorial on the split binary semaphore,
1979. EWD 703.

7. D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231–
274, 1987.

8. P. Lee and T. Anderson. Fault Tolerance Principles
and Practice, volume 3 of Dependable Computing and
Fault-Tolerant Systems. Springer-Verlag, second, re-
vised edition, 1990.

9. S. Lee, S. Gerhart, and W.-P. de Roever. The evolution
of list-copying algorithms and the need for structured
program verification. In Proc. of 6th POPL, 1979.

10. P. Place, W. Wood, and M. Tudball. Survey of formal
specification techniques for reactive systems. Technical
Report, 1990.

11. H. Schepers. Terminology and Paradigms for Fault
Tolerance. Computing Science Notes 91/08 of the
Department of Mathematics and Computing Science
Eindhoven University of Technology, 1991.

10

12. E. Stark. Foundations of a Theory of Specification
for Distributed Systems. PhD thesis, Massachusetts
Inst. of Technology, 1984. Available as Report No.
MIT/LCS/TR-342.

13. E. Stark. A Proof Technique for Rely/Guarantee Prop-
erties. In LNCS 206: Fifth Conf. on FST and TCS,
pages 369–391. Springer-Verlag, 1985.

11

