
CCA: a Calculus of Context-aware Ambients

François Siewe, Antonio Cau and Hussein Zedan
Software Technology Research Laboratory

De Montfort University
Leicester, United Kingdom

Email: {fsiewe, acau, hzedan}@dmu.ac.uk

Abstract

We present a process calculus, CCA, for the modelling
and verification of mobile systems that are context-aware.
This process calculus is built upon the calculus of mobile
ambients and introduces new constructs to enable ambients
and processes to be aware of the environment in which they
are being executed. This results in a powerful calculus where
mobility and context-awareness are first-class citizens. We
present the syntax and a formal semantics of the calculus.
We show that CCA can encode the π-calculus, and illustrate
the pragmatics of the calculus through a case study of a
context-aware hospital bed.

Keywords. Context-awareness, process calculus, mobile am-
bient, pervasive computing

1. Introduction

Pervasive computing is a new paradigm for next-
generation distributed systems where computers disappear
in the background of the users everyday activities. In such a
paradigm computation is performed on a multitude of often
invisible small devices interconnected through a wireless
network. Fundamental to pervasive computing is that any
component (including user, hardware and software) can be
mobile and that computations are context-aware. As a result,
mobility and context-awareness are important features of
any design framework for pervasive computing applications.
Context-awareness requires applications to be able to sense
aspects of the environment and use this information to adapt
their behaviour in response to changing situations. Despite
the advances in mobile computing, there is a fundamental
lack of linguistic supports and mechanisms for modelling
context-awareness in mobile applications.

In order to address these issues we propose the Calculus of
Context-aware Ambients (CCA in short), that is built upon the
well-defined Calculus of Boxed Ambient (CBA in short) [1]
which inherits the mobility model of the Ambient Calculus
(AC in short) [2]. We extend CBA with new constructs to
enable mobile ambients and processes to be aware of the
environment in which they are being executed. This results
in a powerful calculus where mobility and context-awareness

are first-class citizens. Our contributions are summarised as
follows:
• we propose a logical language for expressing properties

of the contexts of CCA processes (Sect. 3). We call
a formula in this logic a context expression. Context
expressions are used in CCA to guard capabilities so
that they are performed only in specified contexts. A
context-guarded capability has the form κ?M where
the guard κ is a context expression and M is a
capability. Such a capability is performed only when the
environment satisfies its guard. We give the semantics
of context expressions in terms of a satisfaction relation
with respect to a formal model of contexts based on the
hierarchical structure of ambients.

• we give the syntax (Sect. 2) and formal semantics
(Sect. 4) of CCA which extends CBA with the following
features: (i) context-guarded capability as explained
above; (ii) process abstraction as a mechanism for
context provision; and (iii) process call as a mechanism
for context acquisition.

• we show that CCA can encode the π-calculus (Sect. 5),
and illustrate the pragmatics of the calculus through a
case study of a context-aware hospital bed (Sect. 6).

2. Syntax of Processes and Capabilities

This section introduces the syntax of the language of CCA.
As in the π-calculus [3], [4], the simplest entities of the cal-
culus are names. These are used to name ambients, locations,
resources and sensors data. We assume a countably-infinite
set of names, elements of which are written in lower-case
letters, e.g. n, x and y. We let ỹ denote a sequence of names
and |ỹ| the arity of such a sequence. We sometimes use ỹ as
a set of names where it is appropriate. We distinguish three
main syntactic categories: processes P , capabilities M and
context expressions κ.

The syntax of processes and capabilities is given in Table
1. The first five process primitives are defined as for CBA
[1]; in particular, an ambient has the form n[P] where n
is the ambient’s name and the process P is the ambient’s
body. However CCA departs from the Ambient Calculus
and other processes calculi such as [5], [6], [2] with the
notion of context-guarded capabilities, whereby a capability

2009 International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-3639-2/09 $25.00 © 2009 IEEE

DOI 10.1109/WAINA.2009.23

972

is guarded by a context-expression which constrains the
environment of the executing process. This is done by
preceding a capability with a context expression followed by
a question mark as in the process κ?M.P . Such a process
waits until the environment satisfies the context expression
κ, then performs the capability M and continues like the
process P . The process learns about its context (i.e. its
environment) by evaluating the guard. In addition to context-
guarded capabilities, we introduce two more constructs
in CCA: process abstraction and process call, inspired by
Zimmer’s notion of named macro [5].

A process abstraction x . (ỹ).P denotes the linking of
the name x to the process P where ỹ is a list of formal
parameters. This linking is local to the ambient where the
process abstraction is defined. So a name x can be linked to
a process P in one ambient and to a different process Q in
another ambient. A call to a process abstraction named x is
done by a capability of the form α x〈z̃〉 where α specifies
the location where the process abstraction is defined and z̃ is
the list of actual parameters. There must be as many actual
parameters as there are formal parameters to the process
abstraction being called. The location α can be ↑ for any
parent, n ↑ for a specific parent n, ↓ for any child, n↓ for a
specific child n, :: for any sibling, n :: for a specific sibling
n, or ε (empty string) for the calling ambient itself. A process
call α x〈z̃〉 behaves like the process linked to x at location
α, in which the formal parameters have been substituted for
the actual parameters z̃. A process call can only take place
if the corresponding process abstraction is available at the
specified location.

Table 1. Syntax of CCA processes and capabilities

P,Q ::= 0| P |Q | (νn) P | n[P] | !P | κ?M.P | x . (ỹ).P

M ::= in n | out | α x〈ỹ〉 | α (ỹ) | α 〈ỹ〉

α ::= ↑ | n ↑ | ↓ | n↓ | :: | n :: | ε

For example: i) the capability ↑ x〈z̃〉 waits until the
process abstraction x is defined in the parent of the calling
ambient, then makes a process call to x; ii) the capability
:: x〈z̃〉 waits until the process abstraction x is defined in
one of the siblings of the calling ambient, then makes a
process call to x; iii) the capability n↓x〈z̃〉 waits until the
process abstraction x is defined in a child ambient named n
of the calling ambient, then makes a process call to x; and
vi) the capability x〈z̃〉 waits until the process abstraction x
is defined in the calling ambient, then makes a process call
to x. In CCA, an ambient provides context by (re)defining
process abstractions to account for its specific functionality.
Ambients can interact with each other by making process
call. Because ambients are mobile, the same process call,
e.g. ↑x〈z̃〉, may lead to different behaviours depending on

the location of the calling ambient. So process abstraction
is used as a mechanism for context provision while process
call is a mechanism for context acquisition.

Ambients exchange messages using the capability α 〈z̃〉 to
send a list of messages z̃ to a location α, and the capability
α (ỹ) to receive a list of messages in ỹ from a location α.
The mobility capabilities in and out are defined as in CBA
[1].

3. Context Expressions

3.1. Context Model

In CCA the notion of ambient is used to model any entity
relevant to the application under consideration: a user, a
location, a device or a software agent. As described in Sect.
2, an ambient has a name, a boundary, a collection of local
processes and can contain other ambients. Meanwhile, an
ambient can move from location to another by performing
the mobility capabilities in and out. It follows that the
structure of a CCA process, at any time, is a hierarchy of
nested ambients. This hierarchical structure self-reconfigures
as the process executes. In such a structure, the context of
a sub-process is obtained by replacing in the structure that
sub-process by a placeholder ‘�’ as illustrated in Example
3.1.

Example 3.1: Suppose a application is modelled by the
process P | n[Q | m[R | S]]. So, the context of the process
R in that application is P | n[Q | m[� | S]], and that of
ambient m is P | n[Q | �].

Our context model is depicted by the grammar in (1),
where the symbol C stands for context, n ranges over names
and P ranges over processes (as defined in Table 1). The
context 0 is the empty context, also called the nil context. It
contains no context information. The position of a process in
that process’ context is denoted by the symbol �. This is a
special context called the hole context. The context (νn) C
means that the scope of the name n is limited to the context
C. The context n[C] means that the internal environment of
the ambient n is described by the context C. The context
C | P says that the process P runs in parallel with the
context C, and so C is part of process P ’s context.

C ::= 0 | � | n[C] | C|P | (νn) C (1)

We let C1(C2) denote the substitution of C2 for each
occurrence of � in C1. The hole � plays an important
role in our context model. In fact a context C containing
a single hole represents the environment of a process P in
the process C(P). An algebraic semantics of contexts is
given in Table 2 in terms of equalities, where the set fn(C)
of free names in a context C is defined as for processes. The
first three equalities say that parallel composition of contexts
has a unit element 0, and is commutative and associative,
respectively. The equalities (Cont-3) to (Cont-6) are related

973

to the manipulation of scopes. The last set of equalities state
that equality propagates across scopes, parallel composition
and ambient nesting, respectively.

Table 2. Algebraic semantics of contexts

C | 0 = C (Cont-0)
C1 | C2 = C2 | C1 (Cont-1)
C1 | (C2 | C3) = (C1 | C2) | C3 (Cont-2)
(νn) (νm) C = (νm) (νn) C (Cont-3)
(νn) C1 | C2 = (νn) (C1 | C2) if n 6∈ fn(C2) (Cont-4)
(νn) m[C] = m[(νn) C] if n 6= m (Cont-5)
(νn) 0 = 0 (Cont-6)
C1 = C2 ⇒ (νn) C1 = (νn) C2 (Cont-7)
C1 = C2 ⇒ C1 | C3 = C2 | C3 (Cont-8)
C1 = C2 ⇒ n[C1] = n[C2] (Cont-9)

In order to navigate through the hierarchical structure of
context, we define a spatial reduction relation �� for context
as follows:

C1 �� C2 =̂ C1 = n[C2] | C3, (2)

for some name n and some context C3. The equation (2) says
that the context C1 contains the context C2 within exactly
one level of nesting. Theorem 3.1 asserts that the spatial
reduction relation �� is closed under equality. Its proof is
immediate from (2) and the equalities in Table 2.

Theorem 3.1: C1 = C2, C2 �� C ′2, C
′
2 = C ′1 ⇒ C1 �� C ′1.

We let ��∗ denote the reflexive and transitive closure of
the spatial reduction relation ��.

3.2. Context Expressions

Based on the formal representation of contexts presented
in the previous section, we define a logical language for
specifying the properties of contexts. Its syntax is given
in Table 3 where κ ranges over formulae called Context
Expressions (CEs in short), n ranges over names and x is a
variable symbol which also ranges over names.

Table 3. Syntax of context expressions

κ ::= T | n = m | • | ¬κ | κ1|κ2 | κ1 ∧ κ2 | n[κ]
| new(n, κ) | ⊕ κ | Gκ | ∃x.κ

The formal semantics of context expressions is given by
the satisfaction relation |= defined in Table 4, where C is
universally quantified over the set of all contexts. In Table
4 the notation C |= κ states that the context C satisfies
the context expression κ. We also denote by κ{x← n} the
substitution of n for each free occurrence of x in κ. We now
explain the meaning of context expressions. The CE T holds
for all contexts described by the grammar in (1). It stands for
the truth value true. A CE of the form n = m holds for a

context if the names n and m are lexically identical. The CE
• holds solely for the hole context �. This CE is particularly
important as it denotes in a context expression the position
of the process evaluating that context expression.

First order operators such as negation (¬), conjunction
(∧) and existential quantification (∃) expand their usual
semantics to context expressions. A CE κ1 | κ2 holds for a
context if that context is a composition of two contexts C1

and C2 such that κ1 holds for C1 and κ2 holds for C2. A CE
n[κ] holds for a context if that context is of the form n[C]
such that κ holds for the context C. A CE new(n, κ) holds
for a context if that context has the form (νn) C such that κ
holds for the context C. A CE ⊕κ holds for a context if that
context can reduce in one step (with respect to the spatial
reduction relation ‘��’ defined in (2)) into a context for which
κ holds. The operator ⊕ is called spatial next modality. A
CE Gκ holds for a context if there exists somewhere in that
context a sub-context for which κ holds. The operator G is
called somewhere modality.

Table 4. Satisfaction relation for context expressions

C |= T (Sat-true)
C |= n = n (Sat-match)
C |= • iff C = � (Sat-hole)
C |= ¬κ iff C 6|= κ (Sat-neg)
C |= κ1 | κ2 iff exists C1, C2 s.t. C = C1 | C2 (Sat-par)

and C1 |= κ1 and C2 |= κ2

C |= κ1 ∧ κ2 iff C |= κ1 and C |= κ2 (Sat-and)
C |= n[κ] iff exists C′ s.t. C = n[C′] (Sat-amb)

and C′ |= κ
C |= new(n, κ) iff exists C′ s.t. C = (νn) C′ (Sat-new)

and C′ |= κ
C |= ⊕κ iff exists C′ s.t. C �� C′ and C′ |= κ (Sat-next)
C |= Gκ iff exists C′ s.t. C ��∗ C′ and C′ |= κ (Sat-sw)
C |= ∃x.κ iff exists n s.t. C |= κ{x← n} (Sat-exist)

Table 5 lists some derived connectives, illustrating prop-
erties that can be expressed in the logic. Their informal
meaning can be understood in a usual manner as in classical
predicate logic. The following theorem is a fundamental

Table 5. Derived connectives

κ1 ∨ κ2 b= ¬(¬κ1 ∧ ¬κ2), κ1 ⇒ κ2 b= ¬κ1 ∨ κ2

F b= ¬T, κ1 ⇔ κ2 b= (κ1 ⇒ κ2) ∧ (κ2 ⇒ κ1)

property of the satisfaction relation |=; it states that satisfac-
tion is invariant under equality of contexts. That is, logical
formulae can only express properties that are invariant up
to equality. The proof of Theorem 3.2 is straightforward by
induction on the number of connectives in κ.

Theorem 3.2: (Satisfaction is up to =)
(C |= κ ∧ C = C ′) ⇒ C ′ |= κ.

Definition 3.1: (Validity) A context expression κ is valid,

974

and we write |= κ, if it holds for all contexts, i.e.

|= κ iff C |= κ, for all context C.

3.3. Examples of Context Expressions

We now give some examples to show how context expres-
sions can be used to specify the properties of the context of
CCA processes. In the following samples of CEs we take the
view that a CE is evaluated by the immediate ambient λ say
that contains it; the parameters n and m are ambient names.

(a) has(n) =̂ ⊕ (• | n[T] | T) holds if n is located at λ.
(b) at(n) =̂ n[⊕(• | T)] | T holds if λ is located at n.
(c) with(n) =̂ n[T] | ⊕ (• | T) holds if λ is co-located

with n.
(d) in with(n) =̂ ⊕ (• | T) | ⊕ (n[T] | T) holds if λ

is co-located with the ambient n’s parent.
(e) out with(n) =̂ n[T] | ⊕ ⊕(• | T) holds if n is

co-located with λ’s parent.
(f) out at(n) =̂ n[⊕⊕ (• | T)] | T holds if λ is a

grand-child of n.
(g) near(n) =̂ has(n) ∨ at(n) ∨ with(n) ∨ out at(n)
∨ in with(n) ∨ out with(n) holds if n is nearby λ.

(h) at2(n,m) =̂ n[m[T] | T] | T holds if m is located
at n.

The context expression has(n) holds if the ambient λ
evaluating the expression has no parent and contains an
ambient named n. For example, has(pda) holds for the
context bob[� | pda[0]] and we write:

bob[� | pda[0]] |= has(pda). (3)

Here the ambient evaluating the CE is bob, i.e. λ = bob; the
ambient bob has no parent and contains an ambient named
pda . The formal proof of (3) is given by Table 6, based on
the algebraic semantics of context defined in Table 2, the
satisfaction relation defined in Table 4 and Theorem 3.2.
Note that the CE has(pda) does not hold for the context

Table 6. Formal proof of (3)

1. 0 |= T {(Sat-true)}
2. pda[0] |= pda[T] {1. and (Sat-amb)}
3. pda[0] | 0 |= pda[T] | T {1., 2. and (Sat-par)}
4. � |= • {(Sat-hole)}
5. � | pda[0] | 0 |= • | pda[T] | T {3., 4. and (Sat-par)}
6. (� | pda[0] | 0) = (� | pda[0]) {(Cont-0)}
7. � | pda[0] |= • | pda[T] | T {5., 6. and Theorem 3.2}
8. bob[� | pda[0]] |= ⊕ (• | pda[T] |T) {7. and (Sat-next)}

conf [bob[� | pda[0]]] because the evaluating ambient bob
has a parent which is the ambient conf ; viz

conf [bob[� | pda[0]]] 6|= has(pda).

But using the spatial operator ⊕ to move one step down in
that hierarchy, we have:

conf [bob[� | pda[0]]] |= ⊕ has(pda).

Similarly, the CE Ghas(pda) holds for any context that has
somewhere the context bob[� | pda[0]] as sub-context.

4. Semantics of CCA

As customary, the operational semantics of CCA is defined
using a structural congruence ≡ and a reduction relation→.
The structural congruence for CCA is the smallest congruence
relation on processes that satisfies the axioms in Table 7,
where ‘· · · ’ refers to the axioms defined in [1] for CBA.
The axiom T?M.P ≡ M.P says that a capability without
guard is the same as that capability guarded with T. The
next two axioms define the equivalence of context-guarded
processes and process abstractions respectively.

Table 7. Structural congruence for processes

T?M.P ≡M.P
P ≡ Q, (|= κ⇔ κ′)⇒ κ?P ≡ κ′?Q
P ≡ Q⇒ x . (ỹ).P ≡ x . (ỹ).Q
· · ·

The reduction relation of processes is defined in Table 8,
where ‘· · · ’ refers to the axioms defined in [1] for CBA.
The first set of rules (Red Call) gives the semantics of a
process call. It states that a process call takes place only if a
corresponding process abstraction is defined at the specified
location. The rule (Red Guard) links the context model
presented in Sect. 3.1 to the reduction relation. It asserts
that a context-guarded capability reduces in a context if that
context satisfies the guard of that capability.

5. Expressiveness of CCA

The encoding of the asynchronous π-calculus in CCA
follows from the encoding of the asynchronous π-calculus
in the Calculus of Boxed Ambient [1] which CCA is a
conservative extension. Due to the space limit, this encoding
is not given here and we refer interested readers to [1] for a
detailed presentation of this encoding. We can then conclude
that CCA is at least as expressive as the π-calculus.

6. Application to Health Care

We illustrate the usability of CCA through a case study of
the context-aware hospital bed designed in the Hospital of
the Future project at the Centre for Pervasive Health Care,
Denmark [7], [8]. The bed has an integrated computer and
a touch sensitive display which is used by the patients for
entertainment purposes (e.g. for watching television) and the

975

Table 8. Reduction relation for processes

x . (ỹ).P | x〈z̃〉 → x . (ỹ).P | P{ỹ ← z̃} (Red Call Lc)
n[Q | x . (ỹ).P] | m[:: x〈z̃〉 | R] → n[Q | x . (ỹ).P] | m[P{ỹ ← z̃} | R] (Red Call S1)
n[Q | x . (ỹ).P] | m[n :: x〈z̃〉 | R] → n[Q | x . (ỹ).P] | m[P{ỹ ← z̃} | R] (Red Call S2)
Q | x . (ỹ).P | m[↑x〈z̃〉 | R] → Q | x . (ỹ).P | m[P{ỹ ← z̃} | R] (Red Call U1)
n[Q | x . (ỹ).P | m[n ↑x〈z̃〉 | R]] → n[Q | x . (ỹ).P | m[P{ỹ ← z̃} | R]] (Red Call U2)
Q | ↓x〈z̃〉 | m[R | x . (ỹ).P] → Q | P{ỹ ← z̃} | m[R | x . (ỹ).P] (Red Call D1)
Q | m↓x〈z̃〉 | m[R | x . (ỹ).P] → Q | P{ỹ ← z̃} | m[R | x . (ỹ).P] (Red Call D2)

C(M.P)→ C′(P) ⇒ C(κ?M.P)→ C′(P) if C |= κ (Red Guard)
· · ·

clinicians for accessing medical data while working at the
bed. The bed is aware of who is using it (i.e. the identity
of the patient), and what and who is near it. For example,
the bed is aware of the nurse, the patient and the medicine
tray. The bed runs a context-aware EPR (Electronic Patient
Record) client. Based on the location of the nurse, the patient
and the medicine tray, the bed can automatically log in the
nurse, find the patient record, display the medicine schema,
and in this schema highlight the prescribed medicine which
is in the pill container. The nurse is automatically logged
out of the computer when she leaves the active zone of
the bed. This mechanism of logging in and logging out a
user based on its proximity is called proximity-based user
authentication [7], [8]. The notion of active zone is used
in the prototype context-aware bed to delimit the range of
the bed awareness. The bed is aware of changes that occur
within its active zone; for example when a nurse enters or
leaves that zone.

We consider six entities: the bed, the patient, the nurse, the
medicine tray, the pill container and the active zone. Each of
these entities is represented as an ambient in CCA. Initially,
the bed is located in its active zone, the patient is inside
the bed, and the nurse and medicine tray containing the pill
containers are outside the active zone of the bed as depicted
in Fig. 1. This is modelled by the following process:

nurse[Pn]
| tray [Pt | con1[P1] | · · · | conk[Pk]]
| zone[bed [Pb | patient 001 [Pp]]]

where Px is a process specifying the behaviour of its host
ambient.

Nurse Ambient. The nurse can enter and leave the
active zone as often as needed in the course of her work
activities. This is done by the corresponding ambient per-
forming the capability in zone to enter the zone and the
capability out to leave the zone. Once in the active zone,
the nurse can access the patient EPR using the touch screen
embedded in the bed. We assume that the nurse bring with
her the medicine tray in and out the active zone. This
requires a synchronisation between the ambient representing
the nurse and the ambient modelling the medicine tray. Such
a synchronisation is modelled using handshake message

Figure 1. Context-aware hospital bed system

passing communication primitives. So the behaviour of the
nurse can be modelled as follows:

Pn =̂ ! with(zone)?tray :: 〈〉.in zone.0 (i)
| ! at(zone)?bed :: epr〈〉.0 (ii)
| ! at(zone)?tray :: 〈〉.out.0 (iii)

The first component (i) in Pn says that when the nurse
ambient is next to the active zone (see CE ‘with(·)’ on
page 4) and is willing to enter the zone, it sends an empty
message to the tray ambient to signal its intention to move
in the active zone. When the tray ambient responds by
receiving this message, the nurse ambient enters the zone
by performing the capability in zone . Once in the active
zone (see CE ‘at(·)’ on page 4), the nurse ambient can
access the patient record by calling the process abstraction
epr located in the bed ambient. This is modelled by the
second component (ii). The last component (iii) says that
the nurse ambient signals its intention to leave the active
zone to the tray ambient by sending an empty message to
it. At the receipt of the message, the nurse ambient leaves
the zone by performing the capability out.

Pill Container Ambient. A pill container is aware of the
patient and reveals itself when near the patient by lighting
the name of the patient. For example, if the pill container
coni, for some i such that 1 ≤ i ≤ k, contains the medicine
of the patient named parent 001 , then the behaviour of the
pill container is specified as follows:

Pi =̂ ! Gnear(patient 001)? ↑〈patient 001 〉.0

976

So the pill container coni lights the patient name by send-
ing the name to its parent ambient, which will eventually
propagate the message.

Tray Ambient. It is assumed that the tray ambient
follows the nurse ambient in and out the active zone to
supply patient medicine stored in pill containers. So the
tray ambient communicates with the nurse ambient to know
when to move in and out the active zone. This is modelled
as follows and the explanation is similar to that of the nurse
ambient.

Pt =̂ ! with(zone)?nurse :: ().in zone.0
| ! at(zone)?nurse :: ().out.0
| ! ↓(msg). :: 〈msg〉.0

The tray ambient is able to receive messages from the pill
container ambients it contains (by performing the capability
‘↓(msg)’) and forward them to the ambients around it such
as the nurse ambient and the bed ambient (by performing
the capability ‘:: 〈msg〉’).

Patient Ambient. The patient ambient selects an enter-
tainment program by sending a request to the bed ambient
as follows:

Pp =̂ ! (νreq) bed ↑〈req〉.0

The restriction operator ‘ν’ models here the freshness of a
request.

Bed Ambient. The bed ambient is located in its active
zone which delimits the context of the bed. One of the
most important context-awareness properties of the bed is
the ability of logging the nurse in when she enters the
active zone and logging her out when she leaves that zone,
automatically. This is modelled as follows:

Pb =̂ (Gat2(zone,nurse))?login〈nurse〉.0 (a)
| ! (G¬at2(zone,nurse))?logout〈〉.

(Gat2(zone,nurse))?login〈nurse〉.0 (b)

The context-guarded capability in (a) says that when the
nurse enter the bed’s active zone, the action ‘login〈nurse〉’
is taken to log the nurse in the EPR system. The nurse is
logged out when she leaves the active zone as specified
in (b). The replication operator ‘!’ in (b) means that the
sequence ‘(a) followed by (b)’ is repeated forever. Due to
space limit, the process abstractions login, logout and epr
are not detailed here.

7. Related Work

Zimmer [5] proposes a context-awareness calculus which
features a hierarchical structure similar to mobile ambients,
and a generic multi-agent synchronisation mechanism in-
spired from the join-calculus. This work has been extended
in [6] by Bucur and Nielson to enable ambients to publish
context information upwards in the hierarchy of ambients.
In both work, a piece of primary context information is

a capability modelled by a named macro, similar to the
notion of process call in CCA. Unlike their approach and
to preserve the autonomy of ambients, we do not allow an
ambient to remotely create a process abstraction in another
ambient. Moreover, none of these calculi enable context-
guarded capabilities. Roman [9] builds a language-based
model of context-aware systems where contexts are provided
through exposed variables as opposed to private variables.

8. Conclusion and Future Work

In this paper we have presented CCA, a calculus of context-
aware mobile ambients. The syntax, formal semantics and
expressiveness of CCA have been presented in this paper.
A case study of a context-aware hospital bed is utilised to
illustrate the usability of the calculus.

In future work, we will investigate a theory of behavioural
equivalence for context-aware mobile ambients based upon
the technique developed in the Ambient Calculus [2] using
Morris-style contextual equivalence. We will also investigate
type systems for verifying key properties of context-aware
mobile applications such as safety, security and privacy.

References

[1] M. Bugliesi, G. Castagna, and S. Crafa, “Access Control
for Mobile Agents: The Calculus of Boxed Ambients,” ACM
Trans. on Programming Languages and Systems, vol. 26, no. 1,
pp. 57–124, January 2004.

[2] L. Cardelli and A. Gordon, “Mobile Ambients,” Theoretical
Computer Science, vol. 240, pp. 177–213, 2000.

[3] R. Milner, Communication and Mobile Systems: The π-
Calculus. Cambridge University Press, 1999.

[4] D. Sangiorgi and D. Walker, The π-calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

[5] P. Zimmer, “A Calculus for Context-awareness,” BRICS, Tech.
Rep., 2005.

[6] D. Bucur and M. Nielsen, “Secure Data Flow in a Calculus
for Context Awareness,” in Concurrency, Graphs and Models,
ser. Lecture Notes in Computer Science, vol. 5065. Springer,
2008, pp. 439–456.

[7] J. Bardram, “Hospitals of the Future–Ubiquitous Computing
Support for Medical Work,” in Hospitals Workshop Ubihealth
2003, 2003.

[8] ——, “Aplications of Context-aware Computing in Hospital
Work–Examples and Design Principles,” in Proceedings of
ACM Symposium on Applied Computing, March 2004, pp.
1574–1579.

[9] G. Roman, C. Julien, and J. Payton, “A Formal Treatment of
Context-Awareness,” in FASE, ser. LNCS, no. 2984. Springer,
2004, pp. 12–36.

977

