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Abstract

The use of formal methods in the development of time-critical applications is essential if
we want to achieve a high level of assurance in them. However, these methods have not yet
been widely accepted in industry as compared to the more established structured and infor-
mal techniques. A reliable linkage between these two techniques will provide the developer
with a powerful tool for developing a provably correct system. In this paper, we explore the
issue of integrating a real-time formal technique, TAM (Temporal Agent Model), with an
industry-strength structured methodology known as HRT-HOOD. TAM is a systematic for-
mal approach for the development of real-time systems based on the refinement calculus.
Within TAM, a formal specification can be written (in a logic-based formalism), analysed
and then refined to concrete representation through successive applications of sound refine-
ment laws. Both abstract specification and concrete implementation are allowed to freely
intermix. HRT-HOOD is an extension to the Hierarchical Object-Oriented Design (HOOD)
technique for the development of Hard Real-Time systems. It is a two-phase design tech-
nique dealing with the logical and physical architecture designs of the system which can
handle both functional and non-functional requirement, respectively. The integrated tech-
nique is illustrated on a version of the mine control system.
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1 Introduction

The reliability of real-time safety critical systems that must meet not only func-
tional but also stringent timing requirements has been a major and important re-
search issue in recent years. As a result, it has been widely acknowledged that
formal methods, with their mathematically rigorous notations and their associated
verification techniques, are essential approaches to ensure the correctness of the de-
velopment and hence increase our dependability on them. For this purpose, a large
number of techniques have been developed which can be generally classified as
assertional methods such as VDM [12], Z [33], and B-Method [1], temporal logic
such as RTTL [24], MTL [13], XCTL [9] and ITL [23], process algebra such as
CSP [10], CCS [22], ACP [2] and LOTOS [34], and Petri nets [25] such as time
Petri Nets [21] and timed Petri Nets [27]. However, these techniques, with the ex-
ception of a few, have not been widely accepted by industry. Even those which are
accepted (e.g., Z and VDM), their use have remained within limited scope of the
whole development process. The requirement of adequate mathematical skills to
both read/write formal specifications and perform formal proofs of correctness has
often been attributed to the limited use of formal techniques.

At the other end of the spectrum, structured methods are well established and are
heavily used by industry. Examples include Structured System Analysis and Design
Methodology (SSADM) [20], Yourdon [35] and Jackson [11] for non-real-time
systems. In addition, ROOM [6] and HRT-HOOD [3] are examples used for real-
time applications.

Although they are well defined and permit the precise specification of systems
structure, structured methods do not, in general, have a sound mathematical ba-
sis which is an essential criterion for the development of provably correct systems.

Various attempts have been made on integrating structured and formal techniques.
In [19,32], both SSADM and Yourdon were integrated with the formal notation Z
respectively. An attempt to incorporate data flow diagrams into the formal specifi-
cation notation VDM was done in [8,26]. Recently, Liu, et al, provided a method
that integrates both formal techniques, structure methodologies and Object-Orien-
ted paradigm [17].

The main objective of the present work is to explore approaches that link between
formal and structured methodologies with the aim that such a linkage should re-
sult in a method that enjoys the advantages of both techniques and, in addition, it
should provide us with a well integrated software development process. This will
certainly help to increase the applicability of formal techniques to large scale indus-
trial applications and also provides the structured methodologies with the required
mathematical underpinning.

To achieve our goal, we chose Hard Real-Time Hierarchical Object-Oriented De-
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sign (HRT-HOOD) [3] as a representative of an industry-strength structured metho-
dology which is being widely used within the space industry (e.g., European Space
Agency). As for formal techniques we decided to use an extension to the Temporal
Agent Model (TAM) [31,30,29,18] which is an example of a well developed tech-
nique based on formal refinement. The extension to TAM is rather conservative to
cater for the object model present in HRT-HOOD.

The proposed linkage may be summarised as follows. HRT-HOOD is used to de-
compose original system’s requirements into some manageable sub-requirements.
Each sub-requirement is formalised, using our extended TAM Specification state-
ment which is subsequently refined into concrete code in an object-oriented style.
This can then be transformed into an equivalent, industrially accepted, program-
ming language, such as Ada. Provision for resource allocation and scheduling is-
sues may also be addressed in a similar fashion as discussed in our earlier work
[4,5,18].

The paper is organised as follows. A brief overview of HRT-HOOD and TAM is
given in Section 2. Section 3 introduces the computational object model for ex-
tended TAM. The syntax and semantics of extended TAM are given in Section 4
and Section 5, respectively. The refinement calculus of TAM is given in Section 6.
Section 7 describes in some detail our integrated method and we demonstrate its
application through a case study in the Section 8.

2 HRT-HOOD and The Temporal Agent Model

In this section we briefly outline both HRT-HOOD and TAM. For more details the
reader should refer to the published materials [3,31,30,29,18].

2.1 HRT-HOOD

HRT-HOOD (Hard Real-Time HOOD) [3] is a design method for real-time sys-
tems in general, and hard real-time systems in particular. It is based on the HOOD
(Hierarchical Object-Oriented Design) [28] method.

HRT-HOOD development process is divided into two phases: a logical followed by
a physical architecture phase. The former supports hierarchical decomposition of
the functional requirement of the system. This results in a collection of objects of
various types and properties. The later addresses system’s non-functional require-
ments and the constraints of the underlying execution environment.

There are five types of objects in HRT-HOOD. These are:
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Active Objects may control the invocations of their operations, and may sponta-
neously invoke operations in other objects. Active objects are the most general
class of objects and have no restriction placed on them.

Passive Objects have no control over the invocations of their operations, and do
not spontaneously invoke operations in other objects.

Protected Objects may control the invocations of their operations, and do not
spontaneously invoke operations in other objects. In general, protected objects
may not have arbitrary synchronisation constraints and must be analysable for
the blocking times they impose on their callers.

Cyclic Objects represent periodic activities; they may spontaneously invoke op-
erations in other objects, but the only operations they have are requests which
demand immediate attention.

Sporadic Objects represent sporadic activities; they may spontaneously invoke
operations in other objects. Each sporadic object has a single operation which
is called to invoke the sporadic activities, and one or more operations which are
requests which demand immediate attention.

In the logical design, a collection of terminal objects (any objects except the ac-
tive ones) is derived through some form of functional decomposition which implies
timing requirements. The decomposition is represented by the include relationship.
A parent object at a high abstraction level includes its child objects at lower levels.
The control flow between objects is represented by the use relationship. An ob-
ject can use methods defined in other objects, however, used methods can only be
visible outside the parent object of the used objects.

method_1

method_2

A parent

C child_1

child_2 child_3Pr Pa

method_21
method_22
method_23

method_31
method_32

Fig. 1. HRT-HOOD Objects

Classification of objects in the HRT-HOOD characterises temporal properties of
real-time systems. This domain-specific style, with the graphic representation and
the object description skeleton, provides the developer with a concise, cohesive,
and powerful set of capabilities. Figure 1 illustrates the graphical representation of
objects in HRT-HOOD.
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2.2 TAM

The Temporal Agent Model(TAM) [31,30,29,18] was developed to be a realistic
formal software development method for real-time systems. The method is based
on refinement calculus and consists of a logic, a wide-spectrum language and a
refinement calculus.

2.2.1 Computational Model

A real-time system in TAM is taken to be a finite collection of possibly concur-
rently executing computation agents which communicate asynchronously via time-
stamped shared data areas called shunts. Shunts are passive shared memory spaces
that contain two values: the first gives the time at which the most recent write took
place, and the second gives the value that was most recently written. Systems them-
selves can be viewed as single agents and composed into larger systems.

At any time, a system can be thought of having a unique state, defined by the values
in the shunts and local variables. An agent is described by a set of computations,
which may transform a local data space and may read and write shunts during
execution. The computation may be nondeterministic. In particular:

� Time is global, i.e., a single clock is available to every agent and shunt. The time
domain is discrete, linear, and modelled naturally by the natural numbers.

� No state change may be instantaneous.
� An agent may start execution either as a result of a write event on a specific shunt,

or as the result of some condition on the current time: these two conditions model
sporadic and periodic tasks respectively.

� An agent may have deadlines on computations and communication. Deadlines
are considered to be hard, i.e., there is no concept of deadline priority, and all
deadlines must me met by the run-time system. We are currently investigating
the inclusion of prioritised deadlines into the language.

� A data space is created when an agent starts execution, with nondeterministic
initial values; the data space is destroyed when the agent terminates. No agent
may read or write another agent’s local data space.

� A system has a static configuration, i.e., the shunt connection topology remains
fixed throughout the lifetime of the system.

� An agent’s output shunts are owned by that agent, i.e., no other agent may write
to those shunts, although many other agents may read them.

� Shunt writing is destructive, but shunt reading is not.

2.2.2 TAM Syntax

Agents in TAM are described as follows.
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A ::� w : Φ � Skip � ∆t � x :� e � x� s � e� s � A ; A� �

varx : T in A � shunt s : T in A � �t� A � ift �i�I gi then Ai fi �

A �A � � A�s
t A � � A � A � � loop for n period t A �

where w is a set of computation variables and shunts; Φ is a predicate in the TAM
Logic Language, which we define below; t is a time; x is a variable of type T; e is
an expression on variables; s is a shunt of type Time�T; I is some finite indexing
set; gi is a boolean expression; and n is a natural number.

Informally:

� w : Φ is a specification statement. It specifies that only the variables in the frame
w may be changed, and the execution must satisfy Φ. Φ is a formula expressed
in the TAM logic (see below).

� The agent Skip may terminate after any delay.
� The agent ∆t terminates after t time units.
� x :� e evaluates the expression e, using the values found in variables at the start

time of the agent, and assigns it to x. The expression e may not include the values
held in shunts: it may only use the values held in variables.

� x� s performs an input from shunt s, storing the value in x; the type of x must
be a time–value pair.

� e� s writes the current value of expression e to shunt s, time-stamping it with
the time of the write.

� A ; A � performs a sequential composition of A and A �.
� var x : T in A defines x to be a new local variable of type T within A ; its initial

value is chosen nondeterministically.
� shunt s : T in A defines s to be a new local shunt of type Time�T within A ; its

initial value is chosen nondeterministically, but it is time-stamped with the time
of its declaration.

� �t� A gives agent A a duration of t: if the agent terminates before t seconds have
elapsed, then the agent should idle to fill this interval; if the agent does not ter-
minate within t seconds, then it is considered to have failed.

� ift �i�I gi then Ai fi evaluates all the boolean guards gi, and executes an Ai

corresponding to a true guard; if all the guards evaluate to false, then the agent
terminates correctly. The evaluation of the guards should take precisely t time
units; if necessary, the agent should idle to fill this interval. We shall sometimes
omit the parameter t if we do not want to specify it. We shall sometimes write
this construct as ift g1 then A1 � g2 then A2 � � � �� gn then An fi.

� A � A � forms a nondeterministic choice between A and A �.
� A�s

t A � monitors shunt s for t time units: if a write occurs within this time, then
it executes A �; otherwise it times-out and executes A .

� A � A � executes the two agents concurrently, terminating when both agents ter-
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minate.
� loopfor n period t A executes A n times, giving each a duration of t.

We note here that no agent may share its local state space with concurrently exe-
cuting agents, and only one concurrent agent may write to any given shunt: these
restrictions allow the development of a compositional semantics and refinement
calculus.

2.2.3 TAM Semantics

The semantics of TAM is given in terms of a predicate in the TAM Logic Language
(TAMLL). This is a first-order logic with simple extensions to deal with times and
the values held in variables and shunts. Formulae in the TAM Logic Language may
include two distinguished variables: tα representing the start time of the execution;
and tω representing the termination time. It may also use terms of the form x@t and
s@t to refer to the values held in variables and shunts at time t. We also use s�ts@t
and s�v@t to refer to the time-stamp and value of a shunt.

TAMLL is powerful enough to express liveness and timeliness properties. Some
safety properties may also be expressed. For example, consider a simple real-time
control system in which an integer is read from a shunt in within 10 time units.
After calculating the square of the integer, the system outputs the results to the
shunt out. It is assumed that the shunt in is constrained by the environment, but
that the shunt out is entirely under the control of the system we are specifying. The
liveness and timeliness property of the system is thus captured by the following
TAMLL formula:

�σ : N �σ � �tα� tω�	out�v@tω � �in�v@σ�2	 tω 
 tα�10

Importantly, we must realise that no other value is written to the shunt out during
the execution of the system, and so we provide a safety requirement that asserts
that during the execution of the system, there is only one write to the shunt out.
This can be done by counting the number of time-stamps which appear in out that
are different to the time-stamps found at time tω:

#�n � �σ : N �σ � �tα� tω�	out�ts@σ� n	n 
� out�ts@tω�� 1

The specification-oriented semantics for TAM is given by defining the semantic
function:

F : TAM � TAMLL�
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such that F ��A �� gives the semantics of A . For example, the semantics of the spec-
ification statement is given by (the full semantics of TAM is given in [29]):

F ��w : Φ��� stable�W �w� tα� tω� 	 Φ�

where the predicate stable�x� t� t�� specifies that the variable x remains constant be-
tween t and t�. Similar predicate is also defined for shunts.

3 Extended Computational Model

To integrate both HRT-HOOD and TAM, the underlying computational model of
the TAM framework should be slightly modified to cater for the object structures
found in HRT-HOOD.

A real-time system is thus viewed as a collection of concurrent activities which
are initiated either periodically or sporadically, together with services that can be
requested by the execution of the activities. The operations of the activities and
services (in the form of threads and methods) are allocated to the corresponding
objects according to their functional and temporal requirements and the relation-
ships between them. An object is an encapsulated operation environment for the
thread or methods.

Threads are activated and terminated with the corresponding objects and are con-
current with each other. Methods are activated by invocations and their executions
may be either concurrent or sequential. Invocations of methods can be either asyn-
chronous or synchronous. Recursive invocations between methods are prohibited,
neither directly nor indirectly.

A method consists of a head and a body. The head specifies the method’s name
and its local environment (if necessary). The body specifies operations over either
the object environment or the method environment, or both. The operations may be
described at a high level of abstraction which can be refined to concrete implemen-
tation. A method and a thread are in fact TAM agents.

We define five types of objects, similar to those found in HRT-HOOD. These are:

(1) sporadic object — defines a unique thread which activates an operation spo-
radically by response to external events. The thread can not be requested and
executed by other method’s invocations. However, it can invoke methods pro-
vided by other objects. The thread may be concurrent with other activities in
the system. A minimum interval can be specified to restrain responses to con-
tinuous event occurrences. Sporadic objects are used to model entities in a
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system which are involved in random activities.
(2) cyclic object — is similar to a sporadic object except that its thread specifies

an operation which is executed periodically. A cyclic object defines a period
to specify how often the operation is executed and it is fixed. Every execution
of the operation must be terminated within this period. Cyclic objects are used
to model entities in a system which are involved in periodic activities.

(3) protected object — defines services which can be invoked. The services are
implemented by methods which can be requested by others for execution. The
methods can be requested arbitrarily, but their executions must be mutually
exclusive. The execution order of invocations depends on their times of re-
quest. We use an invocation order based on “first come first serve”. A method
in a protected object can only request those methods which are (in)directly
implemented by passive objects. Protected objects are used to model shared
critical resources accessed by different objects or methods.

(4) passive object — is similar to a protected object except there are no con-
straints on invocations of its methods. A method in a passive object can be
arbitrarily requested and immediately executed as a part of its client whenever
being requested. A method in a passive object can only request the methods
which are (in)directly implemented by other passive objects. Passive objects
are used to define noninterfering operations on resources.

(5) active object — defines a framework for a number of related objects which
are referred to as its child objects. An active object can be viewed as an inde-
pendent system or subsystem. It encapsulates the methods of its child objects.
Any object outside an active object can not request the methods defined in its
child objects directly but through a method defined by it. The signature of a
method defined in an active object must be consistent with that of its counter-
part except its name. An active object can not include itself as a child object
directly or indirectly and an object can not be a child object of different ob-
jects. An active object is used to model a composition process of systems or
sub-systems.

An object consists of a declaration and method(s) in a structure. The declaration
presents the definitions of attributes and/or an execution environment for methods
defined in the object. The attributes of an object include:

� object type — indicates if the object is either active, sporadic, cyclic, protected
or passive.

� provided methods — provides signatures of the methods which can be invoked
by other objects.

� used methods — declares the methods which will be invoked by the object and
the objects which provide the methods.

Other attributes vary with the type of objects and may include:

� the activation interval of the thread for a cyclic object.
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� the minimum activation interval of the thread for a sporadic object.
� the child object set for an active object.

The environment of an object is a set of data over which the methods of the object
execute (i.e., set of variable and shunt names).

4 Objects and Methods in TAM

In this section we describe the necessary extension to TAM: method, thread and
object structure.

4.1 Methods

A method m is defined in the form of

m��in�out�� � MthEnv�m� A end

where A (a TAM agent) is the body of the method m. in and out are its input and
output parameter lists, respectively. We use Am to denote the body of a method m.

A method can define its local execution environment. We use MthEnv�m� to denote
the local environment of the method m. If in�m� 
� /0 and/or out�m� 
� /0, then they
are defined in MthEnv�m�.

4.2 Objects and Threads

Objects are represented in the graphic notation:

object name
type declaration
provided methods
used methods

child�objects (only for active objects)
environment declaration (only for non-active objects)

method definition

where

10



� type declaration—indicates the object type. We use A, S, C, P and Pr to represent,
respectively, that the object is either active, sporadic, cyclic, passive, or protected.

� provided methods—presents signatures of methods defined in the object which
can be requested by other objects. We use ProvidedMethods�o� to denote the
provided method set of an object o where o is sometimes dropped if no confu-
sion is caused. The signatures must be accordant with their definitions. They are
declared in the form of m�in�out�, where m is a method name which is free in the
object. in and out are sets which present parameters transfered between m and its
clients. #in� 0 and #out� 0. We use in�m� and out�m� to denote them.

� used methods—presents a declaration of the set of object and method name pairs
indicating methods to be invoked and objects which provide the methods. We
use UsedMethods�o� to denote the used method set of an object o. The elements
of the set UsedMethods�o� take the form of �o��m��, where m� is a method to
be invoked by o and is defined in o�. UsedMethods�o� defines use relationships
between o and objects in UsedMethods�o�. Such relationships specify control
flows between objects and together with in�m� and out�m�, data flows are also
specified.

� child� objects—presents a declaration of child objects for active objects. We
use ChildObjects�o� to denote the child object set of o if o is an active object.
ChildObjects�o� specifies an include relationship between o and its child objects
based on which the decomposition process is achieved.

� environment declaration—defines data and their domain for non-active objects.
The data include constants, variables and shunts. For cyclic and sporadic objects,
an activation period and a minimum activation interval are specified in the envi-
ronment declaration respectively. We use ObjEnv�o� to denote the environment
set of an object o.

� method definition—specifies operations accomplished by methods defined in the
object. We use Methods�o� to denote the defined method set of an object o.

Obviously,

ProvidedMethods�o��Methods�o�

The operations are described by means of agents which may be either abstract or
concrete.

An active object defines a system or subsystem which consists of a number of
related objects as its child objects, optionally with a number of methods which are
implemented by its child objects. An active object o with child objects o1, o2, ..., on

and methods m�

1�in1�out1�, ..., m�

k�ink�outk� which are defined in its child objects
oi1, ..., oik can be represented as shown in Fig. 2.
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o
obj type A
ProvidedMethods�o� � �m�

1�in1�out1�� ����m�

k �ink�outk��

ChildObjects�o� �

o1

obj type
...

ObjEnv�o1�

���

oi1
obj type
ProvidedMethods�o� �

�m1�in1�out1�� ����
...

ObjEnv�oi1 �

m1�in1�out1��
...

...

oik
obj type
ProvidedMethods�o� �

�mk�ink �outk�� ����
...

ObjEnv�oik �

mk�ink�outk��
...

���

on

obj type
...

ObjEnv�on�

m�

1�in1�out1� : oi1 �m1�in1�out1�
...
m�

k�ink�outk� : oik �mk�ink�outk�

Fig. 2. Active Object

A cyclic or sporadic object defines a unique thread that operates periodically or
sporadically. Let P and T be the activation period and the minimum activation in-
terval, respectively, a cyclic and a sporadic object are given in the following forms.

o
obj type C
...

period P
...

thread on P
A

end

o
obj type S
...

interval T
...

thread on Ev
A

end

Fig. 3. Cyclic and Sporadic Object

Threads can not be requested by others, so no distinction between them is neces-
sary. They are represented by a keyword thread. The event Ev in a sporadic object
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is represented by a (set of) shunt(s), whose occurrence is caused by a write to these
shunt(s).

Both protected and passive objects are used to define methods which can be re-
quested by other objects. The difference between them is that the methods defined
in a protected object can only be executed exclusively while those defined in a
passive object can be executed immediately when being requested:

o
obj type Pr
ProvidedMethods�o� �
�m1�in1�out1�� ����mn�inn�outn��

...

ObjEnv�o�

m1�in1�out1��
MthEnv�m1�
A1

end
...
mn�inn�outn��

MthEnv�mn�
An

end

o
obj type P
ProvidedMethods�o� �
�m1�in1�out1�� ����mn�inn�outn��

...

ObjEnv�o�

m1�in1�out1��
MthEnv�m1�
A1

end
...
mn�inn�outn��

MthEnv�mn�
An

end

Fig. 4. Protected and Passive Object

5 Specification-Oriented Semantics

In this section we give a specification-oriented semantics for object and methods as
defined in the last section.

An invocation is viewed as a special shunt whose value and time-stamp represent
its status and occurrence time. The invocation status includes:

(1) Request—an invocation is in Request status if and only if it occurs but has not
yet been served.

(2) Activation—an invocation is in Activation status if and only if it has been
served, i.e., the requested method is being executed for it, but has not yet
terminated.

(3) Termination—an invocation is in Termination status if and only if the execu-
tion of the method for it has terminated.

We define

InvStatus � �REQ�ACT�TER�

to represent the domain of the values found in an invocation, which corresponds
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with the invocation status of Request, Activation and Termination respectively. We
use Invm to denote the sequence of all occurring invocations of a method m. The or-
der of elements in Invm is that of requests to the method m and an element uniquely
identifies an invocation. It is assumed that an invocation of the method m is put into
to Invm if and only if it occurs.

The free variables tα and tω, in TAM, are defined to represent the activation and
termination times of agents, objects and systems. The activation and termination
times of objects, methods and agents must be within those of the system defining
the objects, the objects defining the methods and the method defining the agents
respectively. However, the activation and termination times of threads are viewed
as those of the sporadic and cyclic objects which define the threads respectively.

The timing function �c , similar to the @ timing function for variables and shunts,
is defined over pairs �x� t�, where x is a an invocation, and t is a time, resulting in
the invocation status and its occurrence time at the given time:

�c :
�

all m
Invm�Time� InvStatus�Time

The corresponding projection functions for �c are defined as �v�c and �ts�c , and
will result in an invocation status and its occurrence time respectively.

We define that req time�q�, act time�q� and ter time�q� represent the request, ac-
tivation and termination times of an invocation q to a method m respectively, and

1 � i � �1� � Invm ��� t : Time � Invm�i�	c t � �REQ� t�
 req time�Invm�i�� � t

2 � i � �1� � Invm ��� t : Time � Invm�i�	c t � �ACT� t�
 act time�Invm�i�� � t

3 � i � �1� � Invm ��� t : Time � Invm�i�	c t � �TER� t�
 ter time�Invm�i�� � t

It is clear that a normal invocation begins with request, and then activation and
finally termination. However, in some cases, such as that in passive objects, an in-
vocation starts with activation and ends with termination. Moreover, the null oper-
ation in some implementation may have zero duration. This is a useful mechanism,
specially in fault-tolerant systems in which a fail-stop mechanism is adopted. In
such case, a request may terminate immediately.

Following TAM, the specification-oriented semantics of the extension to include
HRT-HOOD is given in terms of a predicate in the TAM Logic Language (TAMLL).
To begin with, a few useful predicates are defined. A shunt s being written to at the
time t can be specified by:

written�s� t�� s �ts@ t � t

A shunt s being written with a value x exactly once during time interval �t1� t2� can
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be specified as:

write sh�x�s� t1� t2��
� t � �t1� t2� � s @ t � �x� t�	 stable��s�� t1� t�1�	 stable��s�� t� t2�

A method m is requested at a time t:

requested�m� t�� � I � Invm � req time�I� � t

If M is a set of methods provided by a protected object o, then the following predi-
cate must be held for the object o:

exclusive�M��

�m�n �M� i1 � �1� � Invm ��� i2 � �1� � Invn ���

act time�Invm�i1��
 act time�Invn�i2��
 ter time�Invm�i1��

� m � n	 i1 � i2

This predicate asserts that executions of all methods in a protected object must be
mutually exclusive.

The specification-oriented semantics of object, method and agent are given in the
following subsections.

5.1 Agents

If a method invocation o��m��in�out� is used in a method m in an object o, and

�o1 � Ancestor�o��o2 � ChildObjects�o1��
m2 � ProvidedMethods�o2� �o� � o2	m� � m2

where Ancestor�o� is the set of ancestors of the object o, and the method m� is
defined in the object o� as:

m��in�out�� A end

then the semantics of Invocation is defined as:

F ��o��m��in�out����

stable�MthEnv�m��out� tα� tω�	

� t1 � �tα� tω�� i � �1� � Invm� �� � req time�Invm��i�� � t1	

� t2� t3 � t1 
 t2 
 t3	 F ��A �t2�tα� t3�tω� in�in�out�out� ��	

��tω � t1 � out�Invm��i�� � /0�� �tω � t3 � out�Invm��i�� 
� /0��
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The definition indicates that

(1) out may be changed by calling a method.
(2) the method is executed at or after the time at which the request is received.
(3) If the calling is a control flow (out � /0), then it terminates when the request

is received. If the calling is a data flow (out 
� /0), then it terminates with the
execution of the method.

Suppose o is an active object which provides a method m implemented by a method
m� defined in one of its children objects, o�. The semantics of Encapsulation is as
follows:

F ��m��in�out�� : o��m���in��out������
o� � ChildObjects�o�	m� � ProvidedMethods�o��	F ��o��m���in��out�����

5.2 Objects

Suppose o is a cyclic, sporadic, protected, passive, or active object with a corre-
sponding notation given in Section 4.

(1) Cyclic object
A cyclic object defines a periodic operation which is time-driven and can not
be called by other objects. The period is specified by the field period. For a
cyclic object o with period P and thread body A , we define

F ��o��� ChildObjects�o� � /0	ProvidedMethods�o� � /0	

�n �N �� t1 � �tα� tω� � t1 � P�n�

� t2 � �tα� tω� � t1 
 t2 
 t1 �P	F ��A �t1�tα� t2�tω� ��

(2) Sporadic object
A sporadic object defines a event-driven operation where an event is identified
by a (set of) shunt(s) and only one response to the event is valid in the given
interval which is specified by the field interval. For a sporadic object o with
interval T and thread body A which responds to the event represented by a
shunt set Ev, we define

F ��o��� ChildObjects�o� � /0	ProvidedMethods�o� � /0	

� t � �tα� tω� �
�

s�Ev
written�s� t�	� t� � �tα� t� � t� s �ts@ t� � T

�� t�� � t�� 
 t�T 	F ��A �t�tα� t���tω� ��

(3) Protected object
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A protected object provides a number of exclusive operations on shared data.
For a protected object o, with Am the body of a method m in o, we define

F ��o��� ChildObjects�o� � /0	ProvidedMethods�o� 
� /0	

��m � ProvidedMethods�o�� t � �tα� tω� � requested�m� t��

�� t� � t �exclusive�ProvidedMethods�o��	F ��Am�t��tα� ����

(4) Passive object
A passive object defines methods of which any is viewed as a part of the
caller’s when it is invoked. For a passive object o, with Am the body of a
method m in o, we define

F ��o��� ChildObjects�o� � /0	ProvidedMethods�o� 
� /0	

�m � ProvidedMethods�o�� t � �tα� tω��

requested�m� t�� F ��Am�t�tα� ��

(5) Active object
An active object defines a decomposition of a system/subsystem in which a
number of objects are identified, namely its child objects. Methods in an active
object are implemented by either its own agents or its child objects. For an
active object o, we define

F ��o��� ChildObjects�o� 
� /0	
�

o��ChildObjects�o�
F ��o� ��	

�m � ProvidedMethods�o�� t � �tα� tω��

�o� � ChildObjects�o��m� � ProvidedMethods�o���

requested�m� t�� requested�m�� t�

6 Refinement Calculus

As in TAM, we define the refinement as follows:

A � A � � A � A �

If A � implies A , then A � refines A . It is easily shown that refinement is a pre-
congruence: that is, if A � A � then C�A�� C�A �� for any context C� � written in
terms of the TAM language. This means that if we refine one part of a program,
then we refine the whole program.

A set of refinement laws are specified to transform an abstract specification into
concrete objects. In the Appendix A, we give some useful refinement laws. Here
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we give two example laws that refine a specification into, respectively a sporadic
and a protected object.

Let

F ��o ���F ��w : Φ��

where F ��o�� is the semantics of sporadic object o as defined in the previous section,
and T is a constant of time, then

w : Φ� o

where o is in the form of the Sporadic Object of Fig. 3.

Let

F ��o ���F ��w : Φ��

where F ��o�� is the semantics of protected object o as defined in the previous sec-
tion, then

w : Φ� o

where o is in the form of the Protected Object of Fig. 4.

7 The Development Technique

Given an informal requirement of a system, REQ, the development process is de-
scribed as follows.

(1) Use HRT-HOOD to decompose REQ to produce a set of sub-requirements:
req1, req2, ..., reqn.

(2) Formalise each sub-requirement reqi using the specification statement to pro-
duce spec1, spec2, ..., specn. Note that the formal specification, SPEC, which
corresponds to REQ, is given by

SPEC �
�

i��1�n�
speci

(3) Using the refinement calculus, each specification speci may be refined into an
object obji:

speci�obji
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(4) The collection of resulting objects are then composed to produce the final
concrete system.

(5) Use HRT-HOOD to map the resulting concrete code to an equivalent Ada
code.

We note the following:

(a) In Step 1, the decomposition of REQ is left to the designer of the system,
and various visual techniques are offered by HRT-HOOD. In this step, a logical
architecture of the system is developed in which appropriate classes of objects,
together with their timing properties are identified. We note here that in the log-
ical architecture we do not address those requirements which are dependent on
the physical constraints imposed by the execution environment. Such constraints
as scheduling analysis are dealt with in a similar fashion as in [18].

(b) Due to compositionality, the final concrete system in the Step 4 is a refinement
of SPEC as defined in the Step 2.

(c) Various properties may be proved at the specification level in the Step 2.

8 A Case Study

The case study used here is a simplified version of “The Mine Control System”[3],
by keeping activities on motor and gas, and adding a sporadic activity initiated by
the operator, as depicted in Fig. 5.

Motor Control System

operator_console motor_interfacegas_sensor

ctrl: {ON,OFF}

level: N

cmd: {START,STOP}

Fig. 5. Motor Control System

8.1 Requirements of the Motor Control System

We can express the system requirements REQ as:
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Motor Control System

Whenever receiving a command from the operator and 10 time units have elapsed
since the last command: if the command is “START”, the motor is off, and the
gas level is not higher than 40, then the motor is switched on within 5 time units.
if the command is “STOP”, the motor is on, then the motor is switched off within
5 time units.

Every 20 time units, the gas level is checked, and if the gas level is higher than 40
and the motor is on, then the motor is switched off within 5 time units.

REQ is decomposed into three sub-requirements req1 , req2 and req3 corresponding
to gas monitor, operator, and motor respectively, as shown in Fig. 6.

Motor Control System

req1 :

Operator
Whenever a command is received and at least 10 time units have elapsed
since the last:
1. if the command is “START”, the motor is not in operation and the gas
level is not higher than 40, then switch the motor on within 5 time units.
2. if the command is “STOP” and the motor is in operation, then switch the
motor off within 5 time units.

req2 : req3 :

Gas Check
Check the gas level every 20 time units:
if the level is higher than 40 and
the motor is in operation, then
switch the motor off within 5 time units.

Motor
Switch the motor on or off if
requested. Only one operation
can be done at the same time.

Fig. 6. Decomposition of the System

8.2 Specification of the System

In this section, we define specifications of the subsystems and objects to represent
corresponding requirements. This is achieved by identifying the system observ-
ables. The system operates the motor according to commands from the operator
console and gas level sampled by the gas sensor. We use shunts cmd, level and ctrl
to model command, gas level and motor control interface respectively:

cmd : �START�STOP�

level : N

ctrl : �ON�OFF�

Thus the system can be represented as shown in Fig. 7.
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Motor Control System
req1 :

Operator
cmd : �START�STOP�
level : N
ctrl : �ON�OFF�

Whenever a cmd is written to and at least 10 time units have elapsed since the last:
1. if the value found in cmd is “START”, the value found in ctrl is “OFF” and
the value found in level is not higher than 40, then write ctrl with the value
“ON” within 5 time units.
2. if the value found in cmd is “STOP” and the value found in ctrl is “ON”,
then write ctrl with the value “OFF” within 5 time units.

req2 : req3 :

Gas Check
level : N
ctrl : �ON�OFF�

Check the gas level every 20 time
units:
if the value found in level is higher
if than 40 and the value found in ctrl
is “ON”, then write ctrl with the
value “OFF” within 5 time units.
units.

Motor
ctrl : �ON�OFF�

write ctrl with the value “ON” or
“OFF” if requested and the value
found in ctrl is not “ON” or
“OFF”. Only one operation can be
done at the same time.

Fig. 7. Basic Objects of the System

Sub-specifications spec1, spec2 and spec3 corresponding to req1, req2 and req3 can
be specified as:

Operator:

spec1 � �ctrl� :

� t � �tα� tω�� t� � t � t� cmd �ts@ t� 
 10 �

�cmd @ t � �START� t�� level �v@ t � 40� ctrl �v@ t � OFF


�d : Time �write sh�ON�ctrl� t� t�d��d � 5��

�cmd @ t � �STOP� t�� ctrl �v@ t � ON


�d : Time �write sh�OFF�ctrl� t� t�d��d � 5�

Gas Check:

spec2 � �ctrl� :

�n �N � � t � �tα� tω� � �t � 20�n� level �v@ t � 40�


�ctrl �v@ t � ON 
�d : Time �write sh�OFF�ctrl� t� t�d��d � 5�
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Motor:

spec3 � �ctrl� :

� t � �tα� tω��

���ctrl �v@ t1 � OFF 
 write sh�ON�ctrl� t� t�d��d � 5��

�ctrl �v@ t1 � ON 
 write sh�OFF�ctrl� t� t�d��d � 5���

�d : Time � stable�ctrl� t� t�d�

Because the gas level is also accessed by the object Motor to check if the gas is
safe, a corresponding method should be provided. However, because the level is
sampled periodically, it can not be accessed sporadically. We introduce an oper-
ation Gas Status to maintain a gas status according to the gas level. A variable
gas st with values �SAFE�UNSAFE� is introduced to represent the gas status. A
corresponding specification spec4 is defined as:

Gas Status:

spec4 � �gas st�s� :

� t � �tα� tω��

���� t� � �t� t�d� � s @ t� � gas st @ t��

�� t� � �t� t�d� �gas st @ t� � s @ t���

�d : Time � stable��gas st�s�� t� t�d�

Correspondingly, spec2 is adapted, denoted by spec�2:

Gas Check:

spec�2 � �ctrl�gas st� :

�n �N � � t � �tα� tω� � t � 20�n�

�level �v@ tα � 40


�ctrl �v@ tα � ON 
�d : Time �write sh�OFF�ctrl� tα� tω��d � 5��

�gas st @ tα � SAFE 
�d� : Time �gas st @ �tα�d�� � UNSAFE���

�level �v@ tα � 40�gas st @ tα � UNSAFE


�d� : Time �gas st @ �tα�d�� � SAFE�

The specification is then SPEC � spec1	 spec�2	 spec3	 spec4.
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8.3 Identication of Objects

The sub-specification spec1 specifies a random operation based on the occurrence
of the issuing command by the operator, which can be identified by a sporadic
object, shown in Fig. 8

Operator
obj type S

interval 10
shunts
cmd : �START�STOP��Time
ctrl : �ON�OFF��Time
level : N �Time

thread on cmd
�ctrl� :
�cmd �v@ tα � START� level �v@ t � 40� ctrl �v@ t � OFF�
write sh�ON�ctrl� tα � tω�� tω� tα � 5�	
�cmd �v@ tα � STOP� ctrl �v@ t � ON�
write sh�OFF�ctrl� tα � tω�� tω� tα � 5�

end

Fig. 8. Object Operator

spec�2 describes an operation which starts every 20 time units. This can be defined
by a cyclic object, shown in Fig. 9.

Gas Check
obj type C

period 20
shunts
ctrl : �ON�OFF��Time
level : N �Time

variables
gas st : �SAFE�UNSAFE�

thread on20
�ctrl�gas st� :
�level �v@ tα � 40�
�ctrl �v@ tα � ON � write sh�OFF�ctrl� tα � tω�� tω� tα � 5��
�gas st @ tα � SAFE �
d� : Time �gas st @ �tα�d�� � UNSAFE��	
�level �v@ tα � 40�gas st @ tα � UNSAFE �

d� : Time �gas st @ �tα�d�� � SAFE�

end

Fig. 9. Object Gas Check

Both spec3 and spec4 define mutually exclusive operations on shared data, ctrl,
gas st, respectively. We introduce methods set on, set off , read and write to cor-
respond to relative predicates. Thus they can be defined by protected objects Motor
and Gas Status, shown both in Fig. 10.

23



Motor
obj type Pr
ProvidedMethods �
�set on�d��set off �d��

shunts
ctrl : �ON�OFF��Time

set on�d��
d : Time
�ctrl� :
ctrl �v@ tα � OFF �
write sh�ON�ctrl� tα � tω��
tω� tα � d

end

set off �d��
d : Time
�ctrl� :
ctrl �v@ tα � ON �
write sh�OFF�ctrl� tα � tω��
tω� tα � d

end

Gas Status
obj type Pr
ProvidedMethods �
�read�s�d��write�s�d��

variables gas st

read�s�d��
s : �SAFE�UNSAFE�
d : Time
�s� :
s@ tω � gas st @ tα � tω� tα � d

end
write�s�d��
s : �SAFE�UNSAFE�
d : Time
�gas st� :
gas st @ tω � s@ tα � tω� tα � d

end

Fig. 10. Object Motor and object Gas Status

8.4 Refinement

In this section, we use refinement laws listed in the Appendix A to refine objects
constructed in the last subsection. They are shown in Figure 11- 14. Some time
parameters are removed at the concrete level and time obligations.

Motor
obj type Pr
ProvidedMethods �
�set on�d��set off �d��

shunts
ctrl : �ON�OFF��Time

variables
x : �ON�OFF�
t : Time

set on�d��
�d� �x� ctrl;
if x � OFF then ON 
 ctrl fi�

end

set off �d��
�d� �x� ctrl;
if x � ON then OFF 
 ctrl fi�

end

Gas Status
obj type Pr
ProvidedMethods �
�read�s�d��write�s�d��

variables
gas st : �SAFE�UNSAFE�

read�s�d�� s : �SAFE�UNSAFE�
�d� s :� gas st end

write�s�d�� s : �SAFE�UNSAFE�
�d� gas st :� s end

Fig. 11. Refined object Motor and refined object Gas Status
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Gas Check
obj type C
UsedMethods � ��Gas Status�write�s�d����Gas Status�read�s�d��

period 20
shunts
level : N �Time

variables
x : N
t : Time
s : �SAFE�UNSAFE�

thread on 20
x � level;
if x � 40 then
Motor�set off ��; Gas Status�read�s�1�;
if s � SAFE then Gas Status�write�UNSAFE�1� fi

orif x� 40 then
Motor�set on��; Gas Status�read�s�1�;
if s � UNSAFE then Gas Status�write�SAFE�1� fi

end
endif

Fig. 12. Refined object Gas Check

Gas Monitor
obj type A
ProvidedMethods � �check�s��

ChildObjects �

Gas Status
obj type Pr
ProvidedMethods �
�read�s�d��write�s�d��

...

Gas Check
obj type C
UsedMethods �
��Gas Status�write�s�d���
�Gas Status�read�s�d��

...

check�s� : Gas Status�read�s�d�

Operator
obj type S
UsedMethods � ��Gas Monitor�check�s���
�Motor�set on�d����Motor�set off �d���

interval 20
shunts
cmd : �START�STOP��Time

variables
x : �START�STOP�
t : Time
s : �SAFE�UNSAFE�

thread on cmd
�5� �
x� cmd;
Gas Monitor�check�s�;
if x � START� s � SAFE then Motor�set on�1�
� x � STOP then Motor�set off �1�
fi
�

end

Fig. 13. Refined object Gas Monitor and refined object Operator
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Motor Control System
obj type A

ChildObjects �

Operator
obj type S
UsedMethods �
��Gas Monitor�check�s���
�Motor�set on�d����Motor�set off �d���

...

Motor
obj type Pr
ProvidedMethods �
�set on�d��set off �d��

...

Gas Monitor
obj type A
ProvidedMethods � �check�s��

...

Fig. 14. Design of the System

9 Conclusions

The debate about the use and relevance of formal methods in the development of
computing systems has always attracted a considerable attention and is continu-
ally doing so. One school of thought (the protagonists) hold the view that formal
techniques offer a complete solution to the problems of system development. An-
other school (the detractors) claims that formal methods have little, or no, use in
the development process (at least due to the cost involved).

For safety critical applications (in particular those which are time-critical), a high
degree of confidence in their correct operations must be attained. This is due to
the fact that a failure may lead to catastrophic consequences including loss of life
and/or damage to the environment. For these sort of applications the use of for-
mal methods have been put forward as techniques to ensure the correctness of the
systems, as they have sound basis in mathematics.

However, the use of formal methods has not been as popular in industry as struc-
tured methodologies which are well defined and supported by the necessary soft-
ware tools but do not have a sound basis in mathematics.

The main objective of the paper was to explore the issue of linkage between formal
and structured methods for the development of time-critical applications. For this
purpose, we have selected HRT-HOOD, as industry- strength object-oriented struc-
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tured technique, and TAM, as a systematic formal development technique. TAM
offers a sound calculus that allows the developer to freely intermix specifications
at a high level of abstraction and concrete code. Through its associated calculus, a
specification can be gradually and systematically be refined into concrete code 2 .
This is achieved in a highly compositional manner allowing the development of
large-scale complex systems. In addition, using the delayed specification technique
(which we have developed in [18]), makes formalising many requirements much
easier and less error prone. It allows the chaining of two such delayed specifications
together: this is useful when we introduce new intermediate shunts which them-
selves satisfy a delayed specification. Using the limited resource model of TAM
[18] allows us to calculate appropriate scheduler for the resulted concrete system.

We believe that the technique developed in this paper provides a solution to increase
the accessability of formal methods. We need to try the technique on other case
studies and investigate the design of an associated integrated tool support. We also
would like to investigate how this technique could be integrated to standard safety
techniques (such as fault tree analysis[16]). In addition, we are currently investigat-
ing the use of Interval Temporal Logic (ITL) [23,5,4] to replace the TAMLL. This
will give us a more powerful logic to express a larger class of liveness properties.
The result of this investigation will be reported elsewhere [7].
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A Refinement Laws

Law. 1 (Strengthen specification)
If Φ��Φ, then w : Φ�w : Φ�
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Law. 2 (Assignment)
If x � w then w : �� t � �tα� tω� � x @ tω � e @ t�� x :� e

Law. 3 (Input)
If x� t � w, then w : �� t� � �tα� tω� � x @ tω � s �v@ t���x� s

Law. 4 (Output)
If x � w, then w : write sh�e�s� tα� tω�� e� s

Law. 5 (Invocation)
If a method

m��in�out��MthEnv�m�� A end

is defined in an object o�, B is an agent in an object o, and

B�A �in�in�out�out�

then

B�o��m��in�out�

and if wB �wo� , then wo � wo�wB , where wB , wo and wo� are frames of B , o and o�

respectively, and

UsedMethods�o� � UsedMethods�o����o��m��in�out��

Law. 6 (Condition)
If �

�

i��1�n�
�gi	Φi�� �

�

i��1�n�
�gi	 stable�w� tα� tω����Φ , then

w : Φ� if g1 then w : Φ1���� gn then w : Φn fi

Law. 7 (Duration)

w : Φ	 tω� tα � d� �d� w : Φ

Law. 8 (Method)
Suppose o1, o2 are two objects with the same type. If

�m� � ProvidedMethods�o1���m�� � ProvidedMethods�o2� �Am��Am��

then

o1�o2

Law. 9 (Child Objects)
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Suppose o1, o2 are two active objects. If

�o� � ChildObjects�o1���o�� � ChildObjects�o2� �o�� o��

then

o1�o2

Law. 10 (Cyclic object)
Let

F ��o ���F ��w : Φ��

where F ��o�� is the semantics of cyclic object o as defined in Sect. 5, then

w : Φ� o

where o is in the form of the Cyclic Object of Fig. 3

Law. 11 (Passive object)
Let

F ��o ���F ��w : Φ��

where F ��o�� is the semantics of passive object o as defined in Sect. 5, then

w : Φ� o

where o is in the form of the Passive Object of Fig. 4

Law. 12 (Active object)
Let

F ��o ���F ��w : Φ��

where F ��o�� is the semantics of active object o as defined in Sect. 5, then

w : Φ� o

where o is in the form of Fig. 2
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