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Motivation (3)

Temporal Logic:
Reasoning about behaviours, i.e., sequences (traces) of
system states
Linear Temporal Logic (LTL):
© (Next), in the next state,
2 (Always), all states in the behaviour,
3 (Sometimes), exist a state in the behaviour
Interval Temporal Logic (ITL):
skip, behaviour of two states,
; (Chop), fusion of two behaviours,
∗ (chopstar), fusion of a finite number of behaviours
Propositional Interval Temporal Logic (PITL):
ITL with only propositional variables, i.e., Boolean values.



Motivation (4)
Verification tools for Propositional Interval Temporal (PITL):

Tempura, Ben Moszkowski, Roger Hale, 1985.
Executable specification, testing
Lite, Shinji Kono, 1991. Tableau-based
ITL Library for interactive theorem prover PVS, Antonio
Cau, 1997. Axioms via Higher-order Logic
AnaTempura, Antonio Cau, Shikun Zhou, 1999. Runtime
verification, Tempura
DCVALID, Paritosh Pandya, 2000. MONA, decision
procedure for WS1S
PITL2Mona, Rodolfo Gomez, 2004. MONA, decision
procedure for WS1S
JavaLite, Shinji Kono, 2008. BDD, Tableau-based
PITL Library for automated theorem prover Prover9,
Antonio Cau, 2008. Algebra, proof search



Syntax of Fusion Logic (5)
State formulae:

W ::= true | p | W1 ∨ W2 | ¬W

Transition formulae:

T ::= W | ©W | T1 ∨ T2 | ¬ T

Fusion expressions:

E ::= test(W ) | step(T ) | E1 ∨ E2 | E1 ; E2 | E∗

Right Fusion logic formulae:

R ::= true | p | ¬R | R1 ∨ R2 |
〈

E
〉

R

Left Fusion logic formulae:

L ::= true | fin (p) | ¬ L | L1 ∨ L2 | L
〈

E
〉

Fusion logic formulae:

F ::= L | R



State (6)

A state is a mapping State from the set of propositional
variables Varb to the set of Boolean values Bool =̂ {tt, ff}.
tt is the semantic ‘true’ value and ff the semantic ‘false’ value.

State : Varb → Bool

We will use σ0, σ1, σ2, . . . to denote states and Σ to denote
the set of all possible states.

Example
Let σ0 be a state such that

σ0(P) = tt
σ0(Q) = ff



Interval and Length (7)

An interval σ is a finite sequence of states

σ : σ0σ1σ2 . . .

Let Σ+ denote the set of all possible finite intervals with at
least one state.
The length of an interval σ is denoted by |σ| and is the
number of states minus 1.

Example

σ = σ0 |σ| = 0
σ = σ0σ1 |σ| = 1
σ = σ0σ1 . . . σn |σ| = n



Prefix, Suffix and Sub Interval (8)

Let σ = σ0σ1σ2 . . . be an interval then
σ0 . . . σk (where 0 ≤ k ≤ |σ|)
denotes a prefix interval of σ
σk . . . σ|σ| (where 0 ≤ k ≤ |σ|)
denotes a suffix interval of σ
σk . . . σl (where 0 ≤ k ≤ l ≤ |σ|)
denotes a sub interval of σ

Example
Let σ = σ0σ1σ2σ3 be an interval then

σ0σ1 is a prefix interval of σ
σ1σ2σ3 is a suffix interval of σ
σ1σ2 is a sub interval of σ



Semantics of State Formula (9)

Let J K be the “meaning” function from ‘state formulae’× Σ+ to
{tt, ff} and let σ be a finite interval (σ ∈ Σ+) then

JtrueKσ = tt
JpKσ = σ0(p)
J¬W Kσ = not JW Kσ
JW1 ∨ W2Kσ = JW1Kσ or JW2Kσ



Semantics of Transition formulae (10)

Let J K be the “meaning” function from
‘transition formulae’× Σ+ to {tt, ff} and let σ be a finite
interval (σ ∈ Σ+) then

J¬ T Kσ = not JT Kσ
JT1 ∨ T2Kσ = JT1Kσ or JT2Kσ
J©W Kσ = JW Kσ1...σ|σ| and |σ| > 0



Semantics of Fusion expressions (11)

Let J K be the “meaning” function from
‘fusion expressions’× Σ+ to {tt, ff} and let σ be a finite
interval (σ ∈ Σ+) then

Jtest(W )Kσ = JW Kσ0 and |σ| = 0
Jstep(T )Kσ = JT Kσ0...σ1 and |σ| = 1
JE1 ∨ E2Kσ = JE1Kσ or JE2Kσ
JE0 ; E1Kσ = tt iff exists a k , s.t. 0 ≤ k ≤ |σ| and

JE0Kσ0...σk = tt and JE1Kσk ...σ|σ| = tt
JE∗Kσ = tt iff exist l0, . . . , ln s.t. l0 = 0 and ln = |σ| and

for all 0 ≤ i < n, li < li+1 and JEKσli ...σli+1
= tt



Semantics of right Fusion logic (12)

Let J K be the “meaning” function from
‘right fusion logic formulae’× Σ+ to {tt, ff} and let σ be a
finite interval (σ ∈ Σ+) then

J¬RKσ = = not JRKσ
JR1 ∨ R2Kσ = JR1Kσ or JR2Kσ
J
〈

E
〉

RKσ = tt iff exists a k , s.t. 0 ≤ k ≤ |σ| and
JEKσ0...σk = tt and JRKσk ...σ|σ| = tt



Semantics of left Fusion logic (13)

Let J K be the “meaning” function from
‘left fusion logic formulae’× Σ+ to {tt, ff} and let σ be a finite
interval (σ ∈ Σ+) then

Jfin (p)Kσ = σ|σ|(p)
J¬ LKσ = not JLKσ
JL1 ∨ L2Kσ = JL1Kσ or JL2Kσ
JL
〈

E
〉
Kσ = tt iff exists a k , s.t. 0 ≤ k ≤ |σ| and

JLKσ0...σk = tt and JEKσk ...σ|σ| = tt



Derived operators (14)

Derived Fusion expression operators

lene(0) =̂ test(true)
lene(n + 1) =̂ step(true) ; lene(n)
truee =̂ step(true)∗

moree =̂ step(true) ; truee
3e W =̂ truee ; test(W ) ; truee
2e W =̂ step(W )∗ ; test(W )
n : W =̂ truee ; test(W ) ; lene(n)



Derived operators (15)

Derived right Fusion logic operators

R1 ∧ R2 =̂ ¬(¬R1 ∨ ¬R2)
R1 ⊃ R2 =̂ ¬R1 ∨ R2
morer =̂

〈
step(true)

〉
true

emptyr =̂ ¬morer
lenr (0) =̂ emptyr
lenr (n + 1) =̂

〈
step(true)

〉
lenr (n)

3r R =̂
〈

truee
〉

R
2r R =̂ ¬3r (¬R)
2r T =̂ 2r

〈
step(T )

〉
true

3i r W =̂ 2r
〈

truee
〉 〈

test(W )
〉

true
2i r W =̂ ¬3i r (¬W )
n :r W =̂

〈
truee

〉 〈
test(W )

〉
lenr (n)[

E
]

R =̂ ¬(
〈

E
〉
¬R)



Derived operators (16)

Derived left Fusion logic operators

L1 ∧ L2 =̂ ¬(¬ L1 ∨ ¬ L2)
L1 ⊃ L2 =̂ ¬ L1 ∨ L2
morel =̂ true

〈
step(true)

〉
emptyl =̂ ¬morel
lenl(0) =̂ emptyl
lenl(n + 1) =̂ lenl(n)

〈
step(true)

〉
3l W =̂ true

〈
test(W )

〉 〈
truee

〉
2l W =̂ ¬3l(¬W )
3i l L =̂ L

〈
truee

〉
2i l L =̂ ¬3i l(¬ L)
n :l W =̂ true

〈
test(W )

〉 〈
lene(n)

〉
L
[

E
]

=̂ ¬(¬ L
〈

E
〉
)



Satisfiable and valid (17)

A fusion logic formula F is satisfiable if and only if there
exists an interval σ such that JF Kσ = tt
Decision procedure checks whether F is satisfiable or not,
when F is satisfiable a satisfying interval is generated.
A fusion logic formula F is valid if and only if for all
intervals σ, JF Kσ = tt
F is not valid if and only if ¬ F is satisfiable
i.e., satisfying interval for ¬ F will represent
a counter example for F ’s validity
F is valid if and only if ¬ F is not satisfiable



Decision Procedure (18)

Time Reversal Step:
transform a left fusion logic formula into a right
fusion logic formula

Reduction Step:
transform right fusion logic formula R into
init ∧ 2r I

BDD Step:
transform init ∧ 2r I into a BDD-based
satisfiability problem



Time Reversal Step (19)

Transform a left fusion formula into a right fusion logic formula.

Let F r denotes the time reversed version of fusion logic
formula F .
Let reverse(σ) denote the time reversed interval of σ:

reverse(σ0 . . . σ|σ|) =̂ σ|σ| . . . σ0

JF rKσ = tt iff JF Kreverse(σ) = tt



Time Reversal Step (20)

Rules to rewrite left fusion logic formulae into right fusion logic
formulae

left fusion formulae

((L
〈

E
〉
)r =

〈
E r 〉 Lr

(fin (p))r = p
truer = true
(¬ L)r = ¬(Lr )
(L1 ∨ L2)r = Lr

1 ∨ Lr
2

fusion expressions transitions

(test(W ))r = test(W )
(step(T ))r = step(T r )
(E1 ∨ E2)r = E r

1 ∨ E r
2

(E1 ; E2)r = E r
2 ; E r

1
(E∗)r = (E r )∗

(©W )r = W
W r = ©W
(T1 ∨ T2)r = T r

1 ∨ T r
2

(¬ T )r = ¬(T r )



Time Reversal Step (21)

The following holds
Let L be a left fusion logic formula then Lr is a right fusion
logic formula.
Let L be a left fusion logic formula then
JLKσ = tt iff JLrKreverse(σ) = tt



Reduction Step (22)

Transform right fusion logic formula R into an equivalent
reduced form init ∧ 2r I where

init : a state formula

init =̂ R′0(f )

I : an invariant,
∧i=k

i=1 (rXi ≡ ti) (for k ≥ 1) where
rXi is a dependent Boolean variable (not appearing in F )
ti is a transition formula

I =̂ R0(f )



Reduction Step (23)
Let X ,X1 and X2 denote non state formulae and w a state
formula then the definition of Transition formulaRk (f ) is as
follows:

For k ∈ {0, 1}
R Rk (R)
W true〈

test(W )
〉

X Rk (X)〈
step(T )

〉
X k = 0 : (r〈 step(T ) 〉X ≡ (T ∧ ©R′

0(X))) ∧ R0(X)

k = 1 : R0(X)〈
E1 ∨ E2

〉
X Rk (

〈
E1

〉
X ∨

〈
E2

〉
X)〈

E1 ; E2
〉

X Rk (
〈

E1
〉 〈

E2
〉

X)〈
E∗

〉
X (r〈 E∗ 〉X ≡ R

′
1(X1)) ∧ R1(X1)

where X1 is X ∨
〈

c(E)
〉

r〈 E∗ 〉X
¬X Rk (X)
X1 ∨ X2 Rk (X1) ∧ R0(X2)

So only the step(t) and e∗ case will introduce a dependent
variable.



Reduction Step (24)

Let X ,X1 and X2 denote non state formulae and w a state
formula then the definition of state formulaR′k (f ) is as follows:

For k ∈ {0, 1}
R R′

k (R)
W W〈

test(W )
〉

X W ∧ R′
k (X)〈

step(T )
〉

X k = 0 : r〈 step(T ) 〉X
k = 1 : T ∧ ©R′

0(X)〈
E1 ∨ E2

〉
X R′

k (
〈

E1
〉

X ∨
〈

E2
〉

X)〈
E1 ; E2

〉
X R′

k (
〈

E1
〉 〈

E2
〉

X)〈
E∗

〉
X r〈 E∗ 〉X

¬X ¬R′
k (X)

X1 ∨ X2 R′
k (X1) ∨ R′

k (X2)



Reduction Step (25)

Reduction function for
〈

E∗
〉

X is a bit more involved
because e could be valid for intervals with only one state.
Solution: a function c is introduced which transforms an
arbitrary fusion expression e into another formula c(e) such
that c(e) ≡ E ∧ moree holds.
Note:

〈
E∗

〉
W ≡

〈
c(E)∗

〉
W holds.

E c(E)
test(W ) test(¬ true)
step(T ) step(T )
E1 ∨ E2 c(E1) ∨ c(E2)
E1 ; E2 c(E1) ; E2 ∨ E1 ; c(E2)

E∗ c(E) ; E∗



Reduction Step (25)
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because e could be valid for intervals with only one state.
Solution: a function c is introduced which transforms an
arbitrary fusion expression e into another formula c(e) such
that c(e) ≡ E ∧ moree holds.
Note:

〈
E∗

〉
W ≡

〈
c(E)∗

〉
W holds.

E c(E)
test(W ) test(¬ true)
step(T ) step(T )
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E∗ c(E) ; E∗



Reduction Step (26)

The following holds
Let R be a right fusion Logic formula and dep(R) be the
dependent variables introduced byR′k (R) andRk (R)
(k = 0, 1) then

R ≡ ∃dep(R) r (R′k (R) ∧ 2Rk (R))



Example (27)

Given a right fusion logic formula〈
step(A)∗

〉
(B ∨ C) ∨

〈
step(A) ; test(B)

〉
D

The Reduction Step yields:

init = rX1 ∨ rX3 where
X1 =̂

〈
step(A)∗

〉
(B ∨ C) and

X3 =̂
〈

step(A)
〉 〈

test(B)
〉

D.

The corresponding invariant I is

I = (rX1 ≡ (B ∨ C) ∨ (A ∧ ©rX1)) ∧ (rX3 ≡ A ∧ ©(B ∧ D))



BDD Step (28)

Transform init ∧ 2r I into BDD based satisfiability problem.
init : a state formula
I : an invariant,

∧i=k
i=1 (rXi ≡ ti) (for k ≥ 1) where

rXi is a dependent variable and
ti is a transition formula

Let us examine the ‘Always’ operator

init ∧ 2r I • • • • •
〈I〉

〈—I—〉
〈—I— — —〉

〈—I— — — — —〉
〈—I— — — — — — —〉
init



BDD Step (29)

We know that invariant I only contains © (next) as temporal
operator. So it can only constrain the first two states of each
suffix interval.

init ∧ 2r I • • • • •
〈I〉

〈—I—〉
〈—I—〉

〈—I—〉
〈—I—〉
init



BDD Step (30)
Introducing BDDs Γi ’s:

Γ1 represents the state formula init .
Γ2 captures all pairs of states corresponding to two state
intervals satisfying invariant I . This can be done by
replacing all variables in the scope of any itl © by a
primed version and delete the ©.
Γ3 captures the behaviour of invariant I in an interval with
only 1 state. This can be done by replacing each ©
construct by false, i.e., ¬ true.

init ∧ 2 I • • • • •
Γ3

〈—Γ2—〉
〈—Γ2—〉

〈—Γ2—〉
〈—Γ2—〉
Γ1



Example (31)

Given right fusion logic formula〈
step(A)∗

〉
(B ∨ C) ∨

〈
step(A) ; test(B)

〉
D

With Init = rX1 ∨ rX3 and corresponding invariant:

I = (rX1 ≡ (B ∨ C) ∨ (A ∧ ©rX1)) ∧ (rX3 ≡ A ∧ ©(B ∧ D))

Then Γ1 = rX1 ∨ rX3 and
Γ2 = (rX1 ≡ (B ∨ C) ∨ (A ∧ r ′X1

)) ∧ (rX3 ≡ A ∧ (B′ ∧ D′))
and
Γ3 = (rX1 ≡ (B ∨ C) ∨ (A ∧ false)) ∧ (rX3 ≡ A ∧ false)



BDD Step (32)
Encoding as a BDD-based satisfiability problem:

We use Γ2 and Γ1 to iteratively calculate a sequence of
BDDs ∆0, . . . ,∆n, so that for any n, ∆n described all
states which can be reached from Γ1 in exactly n steps
using Γ2.
We determine at each iteration whether BDD Γ3 ∧ ∆n is
true or not. If false we must continue to iterate and if true
then there is exists some state satisfying Γ3 which can be
reached in n steps from Γ1, so we can stop the iteration,
i.e., original f is satisfiable.
During the iteration process we maintain a BDD∨

0≤i≤n ∆i representing the set of all states so far
reachable from Γ1. If (

∨
0≤i≤n ∆i) ≡ (

∨
0≤i≤n+1 ∆i), i.e.,

no new states are found, then we stop the iteration and if
we can’t find a state that satisfies Γ3 then original f is not
satisfiable.
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BDD Step (33)

To construct a satisfying interval (in case F is satisfiable) we
proceed as follows.
Let ∆m be that set of states for which Γ3 ∧ ∆m is true.

If there are no independent variables (only ri variables)
then any interval of length m will satisfy F .
If there are independent variables then
Find a value assignment σm for the independent variables
for BDD ∆m, i.e., choose one state σm of ∆m.
Compute Prm−1 denoting those states of ∆m−1 that lead
via Γ2 to state σm (weakest precondition of Γ2 and σm).
Again choose one state σm−1 of Prm−1.
Continue until we reach Pr0 and then choose state σ0.
The states σ0 . . . σm−1σm will then represent a (minimal)
satisfying interval σ for F .
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Implementation (34)
Implementation of decision procedure



Future work (35)

Compare with JavaLite and PITL2MONA
Combine Decision Procedure with theorem prover
Prover9
Compare with tools for mu-calculus
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