
A Decision Procedure for Fusion Logic

Antonio Cau, Helge Janicke and Ben Moszkowski

Software Technology Research Laboratory
De Montfort University

2009

Overview (2)

This talk will introduce a decision procedure for Fusion Logic
1 Introduction

2 Motivation

3 Fusion Logic
Syntax
Semantics

4 Decision Procedure for Fusion Logic
Reduction Step
Reduction Step v2
BDD Step

5 Policy Enforcer

6 Future work

Motivation (3)

Temporal Logic:
Reasoning about behaviours, i.e., sequences (traces) of
system states
Linear Temporal Logic (LTL):
© (Next), in the next state,
2 (Always), all states in the behaviour,
3 (Sometimes), exist a state in the behaviour
Interval Temporal Logic (ITL):
skip, behaviour of two states,
; (Chop), fusion of two behaviours,
∗ (chopstar), fusion of a finite number of behaviours
Propositional Interval Temporal Logic (PITL):
ITL with only propositional variables, i.e., Boolean values.

Motivation (4)
Verification tools for Propositional Interval Temporal (PITL):

Tempura, Ben Moszkowski, Roger Hale, 1985.
Executable specification, testing
Lite, Shinji Kono, 1991. Tableau-based
ITL Library for interactive theorem prover PVS, Antonio
Cau, 1997. Axioms via Higher-order Logic
AnaTempura, Antonio Cau, Shikun Zhou, 1999. Runtime
verification, Tempura
DCVALID, Paritosh Pandya, 2000. MONA, decision
procedure for WS1S
PITL2Mona, Rodolfo Gomez, 2004. MONA, decision
procedure for WS1S
JavaLite, Shinji Kono, 2008. BDD, Tableau-based
PITL Library for automated theorem prover Prover9,
Antonio Cau, 2008. Algebra, proof search

Syntax of Fusion Logic (5)

Syntax of:
State formulae:

w ::= true | Q | ¬w | w1 ∨ w2

Transition formulae:

t ::= true | Q | ©w | ¬t | t1 ∨ t2

Fusion expressions:

e ::= test(w) | step(t) | e1 ∨ e2 | e1 ; e2 | e∗

Fusion logic formulae:

f ::= true | Q | ¬f | f1 ∨ f2 | 〈e〉f

State (6)

A state is a mapping State from the set of propositional
variables Varb to the set of Boolean values Bool =̂ {tt, ff}.
tt is the semantic ‘true’ value and ff the semantic ‘false’ value.

State : Varb → Bool

We will use σ0, σ1, σ2, . . . to denote states and Σ to denote
the set of all possible states.

Example
Let σ0 be a state such that

σ0(P) = tt
σ0(Q) = ff

Interval and Length (7)

An interval σ is a finite sequence of states

σ : σ0σ1σ2 . . .

Let Σ+ denote the set of all possible finite intervals with at
least one state.
The length of an interval σ is denoted by |σ| and is the
number of states minus 1.

Example

σ = σ0 |σ| = 0
σ = σ0σ1 |σ| = 1
σ = σ0σ1 . . . σn |σ| = n

Prefix, Suffix and Sub Interval (8)

Let σ = σ0σ1σ2 . . . be an interval then
σ0 . . . σk (where 0 ≤ k ≤ |σ|)
denotes a prefix interval of σ
σk . . . σ|σ| (where 0 ≤ k ≤ |σ|)
denotes a suffix interval of σ
σk . . . σl (where 0 ≤ k ≤ l ≤ |σ|)
denotes a sub interval of σ

Example
Let σ = σ0σ1σ2σ3 be an interval then

σ0σ1 is a prefix interval of σ
σ1σ2σ3 is a suffix interval of σ
σ1σ2 is a sub interval of σ

Semantic Boolean operators (9)

Truth tables for Semantic Boolean operators:
not : X not X

tt ff
ff tt

and : X Y X and Y
tt tt tt
tt ff ff
ff tt ff
ff ff ff

or : X Y X or Y
tt tt tt
tt ff tt
ff tt tt
ff ff ff

implies : X Y X implies Y
tt tt tt
tt ff ff
ff tt tt
ff ff tt

iff : X Y X iff Y
tt tt tt
tt ff ff
ff tt ff
ff ff tt

Semantics of w (10)

Let [[. . .]] be the “meaning” function from ‘state formulae’×Σ+

to {tt, ff} and let σ be a finite interval (σ ∈ Σ+) then

[[true]]σ =̂ tt
[[Q]]σ =̂ σ0(Q)
[[¬w]]σ =̂ not ([[w]]σ)
[[w1 ∨ w2]]σ =̂ ([[w1]]σ or [[w2]]σ)

Semantics of w (11)

Example

Let σ0(P) = tt and σ0(Q) = ff.

[[p ∨ q]]σ
= [[P]]σ or [[Q]]σ
= σ0(P) or σ0(Q)
= tt or ff
= tt

Semantics of t (12)

Let [[. . .]] be the “meaning” function from
‘transition formulae’× Σ+ to {tt, ff} and let σ be a finite
interval (σ ∈ Σ+) then

[[true]]σ =̂ tt
[[Q]]σ =̂ σ0(Q)
[[¬t]]σ =̂ not ([[t]]σ)
[[t1 ∨ t2]]σ =̂ ([[t1]]σ or [[t2]]σ)

[[©w]]σ = tt iff [[w]]σ1...σ|σ| and |σ| > 0

Semantics of t (13)

Example

Let σ0(Q) = tt, σ1(Q) = ff and |σ| = 1.

[[¬(©Q)]]σ
= not ([[©Q]]σ)
= not ([[Q]]σ1...σ|σ| and |σ| > 0)

= not (σ1(Q) and |σ| > 0)
= not (ff and 1 > 0)
= not (ff and tt)
= tt

Semantics of e (14)

Let [[. . .]] be the “meaning” function from
‘fusion expressions’× Σ+ to {tt, ff} and let σ be a finite
interval (σ ∈ Σ+) then

[[test(w)]]σ =̂ [[w]]σ and |σ| = 0
[[step(t)]]σ =̂ [[t]]σ and |σ| = 1
[[e1 ∨ e2]]σ =̂ [[e1]]σ or [[e2]]σ

Semantics of e (15)

The semantics of ‘chop’ is as follows [[e1 ; e2]]σ = tt iff

(exists k , s.t. [[e1]]σ0...σk = tt and [[e2]]σk ...σ|σ| = tt)

| 〈—e1—〉 | 〈—e2—〉 |
σ0 σk σ|σ|
• · · · • · · · •

Interval σ is a fusion of prefix interval σ0 . . . σk (satisfies e1)
and suffix interval σk . . . σ|σ| (satisfies e2). State σk is shared
by both.

Semantics of e (16)

The semantics of ‘chopstar’ is as follows [[e∗]]σ = tt iff

(exist l0, . . . , ln s.t. l0 = 0 and ln = |σ| and
for all 0 ≤ i < n, li ≤ li+1 and [[e]]σli ...σli+1

= tt)

| 〈—e—〉 | · · · | 〈—e—〉 | · · · | 〈—e—〉 |
σ0 σl1 σli σli+1 σln−1 σ|σ|
• · · · • · · · • · · · • · · · • · · · •

Interval σ is the fusion of a finite number of sub-intervals each
satisfying e.

Semantics of f (17)

Let [[. . .]] be the “meaning” function from
‘fusion logic formulae’× Σ+ to {tt, ff} and let σ be a finite
interval (σ ∈ Σ+) then

[[true]]σ =̂ tt
[[Q]]σ =̂ σ0(Q)
[[¬f]]σ =̂ not ([[f]]σ)
[[e1 ∨ e2]]σ =̂ [[e1]]σ or [[e2]]σ
[[〈e〉f]]σ = tt iff exists a k , s.t.

[[e]]σ0...σk = tt and [[f]]σk ...σ|σ| = tt

Derived operators (18)
Derived Fusion expression operators

len(0) =̂ test(true) one state interval
len(n + 1) =̂ step(true) ; len(n) interval with n + 2 states
finite =̂ (len(1))∗ all finite intervals

Derived Fusion logic operators

f1 ∧ f2 =̂ ¬(¬f1 ∨ ¬f2) conjunction
©f =̂ 〈len(1)〉f f in next state
more =̂ © true all intervals with ≥ 2 states
empty =̂ ¬more all intervals with 1 state
skip =̂ ©empty all intervals with 2 states
3 f =̂ 〈finite〉f f in some suffix interval
2 f =̂ ¬3¬f f in all suffix intervals
fin f =̂ 2(more ∨ f) f holds in final state
[e]f =̂ ¬(〈e〉¬f) e always followed by f

Satisfiable and valid (19)

A fusion logic formula f is satisfiable if and only if there
exists an interval σ such that [[f]]σ = tt
Decision procedure checks whether f is satisfiable or not,
when f is satisfiable a satisfying interval is generated.
A fusion logic formula f is valid if and only if for all
intervals σ, [[f]]σ = tt
f is not valid if and only if ¬f is satisfiable

i.e., satisfying interval for ¬f will represent
a counter example for f ’s validity

f is valid if and only if ¬f is not satisfiable

Decision Procedure (20)

Reduction Step:
transform f into init ∧ 2 I

BDD Step:
transform init ∧ 2 I into a BDD-based
satisfiability problem

Reduction Step (21)

Transform FL formula f into an equivalent reduced form
init ∧ 2 I

init : a state formula rk

I : an invariant,
∧i=k

i=1 (ri ≡ ti) (for k ≥ 1) where
ri is a dependent Boolean variable (not appearing in f)
ti is a transition formula

Reduction Step (22)

LetR(f) be a symbolic reduction function that transform any
FL formula f into its corresponding invariant of the form∧i=k

i=1 (ri ≡ ti).

Idea: R() introduces dependent variables ri ’s to ‘rewrite’ all
the FL temporal operators except ©.

Let |R(f)| denote the number of distinct dependent variables
inR(f).

Reduction Step (23)

Transformation of Fusion Logic Formula:
Let X ,X1 and X2 denote non state formulae and w a state
formula.

f R(f)
w r1 ≡ w
¬X R(X) ∧ (rk+1 ≡ ¬rk)

where k = |R(X)|
X1 ∨ X2 R(X1) ∧ R(X2) ↑ j ∧ rj+k+1 ≡ (rj ∨ rk+j)

where j = |R(X1)| and k = |R(X2)|
〈e〉X R(X) ∧ (R(〈e〉q) ↑ k)[q ← rk]

where q is a fresh variable and k = |R(X)|

where, for any invariant I , the operation I ↑ k is defined to be
the invariant where the subscripts of dependent variables ri
are shifted by k , i.e., ri becomes ri+k .

Reduction Step (24)

Transformation of Fusion expressions:
We are left with only FL formulae of the form 〈e〉w .

We will use the following reduction rules to rewrite them

f R(f)
〈test(w ′)〉w r1 ≡ (w ∧ w ′)
〈step(t)〉w r1 ≡ (t ∧ ©w)
〈e1 ∨ e2〉w R(〈e1〉w ∨ 〈e2〉w)
〈e1 ; e2〉w R(〈e1〉(〈e2〉w))

Reduction Step (25)
Reduction function for 〈e∗〉w is problematic because e could
be valid for intervals with only one state.
Solution: a function c is introduced which transforms an
arbitrary fusion expression e into another formula c(e) such
that c(e) ≡ (e ∧ len(n)) holds (n ≥ 1).
Note: 〈e∗〉w ≡ 〈c(e)∗〉w holds.

e c(e)
test(w) test(¬true)
step(t) step(t)
e1 ∨ e2 c(e1) ∨ c(e2)

e1 ; e2 c(e1) ; e2 ∨ e1 ; c(e2)
e∗ c(e) ; e∗

Reduction of 〈e∗〉w is then follows

〈e∗〉w R(w ∨ 〈c(e)〉q)[q ← rk]
where q is a fresh variable and
k = |R(w ∨ 〈c(e)〉q)|

Reduction Step (25)
Reduction function for 〈e∗〉w is problematic because e could
be valid for intervals with only one state.
Solution: a function c is introduced which transforms an
arbitrary fusion expression e into another formula c(e) such
that c(e) ≡ (e ∧ len(n)) holds (n ≥ 1).
Note: 〈e∗〉w ≡ 〈c(e)∗〉w holds.

e c(e)
test(w) test(¬true)
step(t) step(t)
e1 ∨ e2 c(e1) ∨ c(e2)

e1 ; e2 c(e1) ; e2 ∨ e1 ; c(e2)
e∗ c(e) ; e∗

Reduction of 〈e∗〉w is then follows

〈e∗〉w R(w ∨ 〈c(e)〉q)[q ← rk]
where q is a fresh variable and
k = |R(w ∨ 〈c(e)〉q)|

Example (26)

Given FL formula

〈step(A)∗〉(B ∨ C) ∨ 〈step(A) ; test(B)〉D

Then init is r6.
The corresponding invariant I is as follows:

r6 ≡ r3 ∨ r5
∧ r5 ≡ A ∧ ©r4
∧ r4 ≡ D ∧ B
∧ r3 ≡ r1 ∨ r2
∧ r2 ≡ A ∧ ©r3
∧ r1 ≡ B ∨ C

Reduction Step v2 (27)

Reduction technique that introduces fewer dependent
variables.

Transform FL formula f into following equivalent reduced form

init ∧ 2 I

where

init =̂ R′0(f)
I =̂ R0(f)

For k ∈ {0, 1},Rk (f) is a transition formula,R′0(f) is a state
formula andR′1(f) is a transition formula.

Reduction Step v2 (28)
Let X ,X1 and X2 denote non state formulae and w a state
formula then the definition of Transition formulaRk (f) is as
follows:

f Rk (f)
w true
〈test(w)〉X Rk (X)
〈step(t)〉X k = 0 : (r〈step(t)〉X ≡ (t ∧ ©R′0(X))) ∧ R0(X)

k = 1 : R0(X)
〈e1 ∨ e2〉X Rk (〈e1〉X ∨ 〈e2〉X)
〈e1 ; e2〉X Rk (〈e1〉〈e2〉X)
〈e∗〉X (r〈e∗〉X ≡ R′1(X1)) ∧ R1(X1),

where X1 is X ∨ 〈c(e)〉r〈e∗〉X
¬X Rk (X)
X1 ∨ X2 Rk (X1) ∧ Rk (X2)

So only the step(t) and e∗ case will introduce a dependent
variable.

Reduction Step v2 (29)

Let X ,X1 and X2 denote non state formulae and w a state
formula then the definition of state formulaR′k (f) is as follows:

f R′k (f)
w w
〈test(w)〉X w ∧ R′k (X)
〈step(t)〉X k = 0 : r〈step(t)〉X

k = 1 : t ∧ ©R′0(X)
〈e1 ∨ e2〉X R′k (〈e1〉X ∨ 〈e2〉X)
〈e1 ; e2〉X R′k (〈e1〉〈e2〉X)
〈e∗〉X r〈e∗〉X
¬X ¬R′k (X)
X1 ∨ X2 R′k (X1) ∨ R′k (X2)

Example (30)

Given again FL formula

〈step(A)∗〉(B ∨ C) ∨ 〈step(A) ; test(B)〉D

we now use Reduction Step v2.

The init is rX1 ∨ rX3 where
X1 =̂ 〈step(A)∗〉B ∨ C and X3 =̂ 〈step(A)〉〈test(B)〉D.

The corresponding invariant:

rX1 ≡ (B ∨ C) ∨ (A ∧ ©rX1)
∧ rX3 ≡ A ∧ ©(B ∧ D)

So the number of dependent variables has been reduced from
6 to 2.

BDD Step (31)

Transform init ∧ 2 I into BDD based satisfiability problem.

init : a state formula rk
I : an invariant,

∧i=k
i=1 (ri ≡ ti) (for k ≥ 1) where

ri is a dependent variable and
ti is a transition formula

Let us examine the ‘Always’ operator

init ∧ 2 I • • • • •
〈I〉

〈—I—〉
〈—I— — —〉

〈—I— — — — —〉
〈—I— — — — — — —〉
init

BDD Step (32)

We know that invariant I only contains © (next) as temporal
operator. So it can only constrain the first two states of each
suffix interval.

init ∧ 2 I • • • • •
〈I〉

〈—I—〉
〈—I—〉

〈—I—〉
〈—I—〉
init

BDD Step (33)
Introducing BDDs Γi ’s:

Γ1 represents the state formula init .
Γ2 captures all pairs of states corresponding to two state
intervals satisfying invariant I . This can be done by
replacing all variables in the scope of any © by a primed
version and delete the ©.
Γ3 captures the behaviour of invariant I in an interval with
only 1 state. This can be done by replacing each ©
construct by false, i.e., ¬true.

init ∧ 2 I • • • • •
Γ3

〈—Γ2—〉
〈—Γ2—〉

〈—Γ2—〉
〈—Γ2—〉
Γ1

Example (34)
Given FL formula

〈step(A)∗〉(B ∨ C) ∨ 〈step(A) ; test(B)〉D
With corresponding invariant:

r6 ≡ r3 ∨ r5 ∧ r5 ≡ A ∧ ©r4 ∧
r4 ≡ D ∧ B ∧ r3 ≡ r1 ∨ r2 ∧
r2 ≡ A ∧ ©r3 ∧ r1 ≡ B ∨ C

Then Γ1 =̂ r6
Γ2 =̂

r6 ≡ r3 ∨ r5 ∧ r5 ≡ A ∧ r ′4 ∧
r4 ≡ D ∧ B ∧ r3 ≡ r1 ∨ r2 ∧
r2 ≡ A ∧ r ′3 ∧ r1 ≡ B ∨ C

Γ3 =̂

r6 ≡ r3 ∨ r5 ∧ r5 ≡ A ∧ false ∧
r4 ≡ D ∧ B ∧ r3 ≡ r1 ∨ r2 ∧
r2 ≡ A ∧ false ∧ r1 ≡ B ∨ C

BDD Step (35)
Encoding as a BDD-based satisfiability problem:

We use Γ2 and Γ1 to iteratively calculate a sequence of
BDDs ∆0, . . . ,∆n, so that for any l , ∆n described all
states which can be reached from Γ1 in exactly n steps
using Γ2.
We determine at each iteration whether BDD Γ3 ∧ ∆n is
true or not. If false we must continue to iterate and if true
then there is exists some state satisfying Γ3 which can be
reached in n steps from Γ1, so we can stop the iteration,
i.e., original f is satisfiable.
During the iteration process we maintain a BDD∨

0≤i≤n ∆i representing the set of all states so far
reachable from Γ1. If (

∨
0≤i≤n ∆i) ≡ (

∨
0≤i≤n+1 ∆i), i.e.,

no new states are found, then we stop the iteration and if
we can’t find a state that satisfies Γ3 then original f is not
satisfiable.

BDD Step (35)
Encoding as a BDD-based satisfiability problem:

We use Γ2 and Γ1 to iteratively calculate a sequence of
BDDs ∆0, . . . ,∆n, so that for any l , ∆n described all
states which can be reached from Γ1 in exactly n steps
using Γ2.
We determine at each iteration whether BDD Γ3 ∧ ∆n is
true or not. If false we must continue to iterate and if true
then there is exists some state satisfying Γ3 which can be
reached in n steps from Γ1, so we can stop the iteration,
i.e., original f is satisfiable.
During the iteration process we maintain a BDD∨

0≤i≤n ∆i representing the set of all states so far
reachable from Γ1. If (

∨
0≤i≤n ∆i) ≡ (

∨
0≤i≤n+1 ∆i), i.e.,

no new states are found, then we stop the iteration and if
we can’t find a state that satisfies Γ3 then original f is not
satisfiable.

BDD Step (35)
Encoding as a BDD-based satisfiability problem:

We use Γ2 and Γ1 to iteratively calculate a sequence of
BDDs ∆0, . . . ,∆n, so that for any l , ∆n described all
states which can be reached from Γ1 in exactly n steps
using Γ2.
We determine at each iteration whether BDD Γ3 ∧ ∆n is
true or not. If false we must continue to iterate and if true
then there is exists some state satisfying Γ3 which can be
reached in n steps from Γ1, so we can stop the iteration,
i.e., original f is satisfiable.
During the iteration process we maintain a BDD∨

0≤i≤n ∆i representing the set of all states so far
reachable from Γ1. If (

∨
0≤i≤n ∆i) ≡ (

∨
0≤i≤n+1 ∆i), i.e.,

no new states are found, then we stop the iteration and if
we can’t find a state that satisfies Γ3 then original f is not
satisfiable.

BDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let ∆m be that set of states for which Γ3 ∧ ∆m is true.

If there are no independent variables (only ri variables)
then any interval of length m will satisfy f .
If there are independent variables then
Find a value assignment σm for the independent variables
for BDD ∆m, i.e., choose one state σm of ∆m.
Compute Prem−1 denoting those states of ∆m−1 that
lead via Γ2 to state σm (weakest precondition of Γ2 and
σm). Again choose one state σm−1 of Prem−1.
Continue until we reach Pre0 and then choose state σ0.
The states σ0 . . . σm−1σm will then represent a (minimal)
satisfying interval σ for f .

BDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let ∆m be that set of states for which Γ3 ∧ ∆m is true.

If there are no independent variables (only ri variables)
then any interval of length m will satisfy f .
If there are independent variables then
Find a value assignment σm for the independent variables
for BDD ∆m, i.e., choose one state σm of ∆m.
Compute Prem−1 denoting those states of ∆m−1 that
lead via Γ2 to state σm (weakest precondition of Γ2 and
σm). Again choose one state σm−1 of Prem−1.
Continue until we reach Pre0 and then choose state σ0.
The states σ0 . . . σm−1σm will then represent a (minimal)
satisfying interval σ for f .

BDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let ∆m be that set of states for which Γ3 ∧ ∆m is true.

If there are no independent variables (only ri variables)
then any interval of length m will satisfy f .
If there are independent variables then
Find a value assignment σm for the independent variables
for BDD ∆m, i.e., choose one state σm of ∆m.
Compute Prem−1 denoting those states of ∆m−1 that
lead via Γ2 to state σm (weakest precondition of Γ2 and
σm). Again choose one state σm−1 of Prem−1.
Continue until we reach Pre0 and then choose state σ0.
The states σ0 . . . σm−1σm will then represent a (minimal)
satisfying interval σ for f .

BDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let ∆m be that set of states for which Γ3 ∧ ∆m is true.

If there are no independent variables (only ri variables)
then any interval of length m will satisfy f .
If there are independent variables then
Find a value assignment σm for the independent variables
for BDD ∆m, i.e., choose one state σm of ∆m.
Compute Prem−1 denoting those states of ∆m−1 that
lead via Γ2 to state σm (weakest precondition of Γ2 and
σm). Again choose one state σm−1 of Prem−1.
Continue until we reach Pre0 and then choose state σ0.
The states σ0 . . . σm−1σm will then represent a (minimal)
satisfying interval σ for f .

BDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let ∆m be that set of states for which Γ3 ∧ ∆m is true.

If there are no independent variables (only ri variables)
then any interval of length m will satisfy f .
If there are independent variables then
Find a value assignment σm for the independent variables
for BDD ∆m, i.e., choose one state σm of ∆m.
Compute Prem−1 denoting those states of ∆m−1 that
lead via Γ2 to state σm (weakest precondition of Γ2 and
σm). Again choose one state σm−1 of Prem−1.
Continue until we reach Pre0 and then choose state σ0.
The states σ0 . . . σm−1σm will then represent a (minimal)
satisfying interval σ for f .

Implementation (37)

Policy Enforcer (38)
Access control policy rules are of the form [e]w

[[[e]w]]σ = tt iff for all k , s.t.
[[e]]σ0...σk = tt implies [[w]]σk ...σ|σ| = tt

w : state formula, access control authorisations: positive,
negative and decision.
e: fusion expression, premise: describing history
behaviour
Use Decision Procedure to check policy rules properties,
conflicts, safety, etc.
Enforcement:
Policy rule is never violated
Access control policy rule does not constrain the interval
length and are ‘for all’-type of formulae

Policy Enforcer (38)
Access control policy rules are of the form [e]w

[[[e]w]]σ = tt iff for all k , s.t.
[[e]]σ0...σk = tt implies [[w]]σk ...σ|σ| = tt

w : state formula, access control authorisations: positive,
negative and decision.
e: fusion expression, premise: describing history
behaviour
Use Decision Procedure to check policy rules properties,
conflicts, safety, etc.
Enforcement:
Policy rule is never violated
Access control policy rule does not constrain the interval
length and are ‘for all’-type of formulae

Policy Enforcer (39)

Enforcing policy f means once a satisfying interval σ has
been found continue to find the ‘next’ satisfying interval σ·σ′,
i.e., don’t stop at the first interval σ but try to extend it with σ′.
Repeat this extension step.

init ∧ 2 I • • • • • • • . . .
〈I〉 〈–I–〉〈I〉
〈I〉 〈–I–〉
〈I〉〈–I–〉
〈I〉

〈–I–〉
〈–I–〉

〈–I–〉
init

Policy Enforcer (39)

Enforcing policy f means once a satisfying interval σ has
been found continue to find the ‘next’ satisfying interval σ·σ′,
i.e., don’t stop at the first interval σ but try to extend it with σ′.
Repeat this extension step.

init ∧ 2 I • • • • • • • . . .
〈I〉 〈–I–〉〈I〉
〈I〉 〈–I–〉
〈I〉〈–I–〉
〈I〉

〈–I–〉
〈–I–〉

〈–I–〉
init

Future work (40)

Compare with JavaLite and PITL2MONA
Introduce all PITL derived operators in FL
Extend to infinite time
Extend to integer variables
Combine Decision Procedure with theorem prover
Prover9
Compare FL enforcement with other enforcement
frameworks
Optimise FL enforcement
Compare with tools for mu-calculus

Any... (41)

QUESTIONS?

	Introduction
	Motivation
	Fusion Logic
	Syntax
	Semantics

	Decision Procedure for Fusion Logic
	Reduction Step
	Reduction Step v2
	BDD Step

	Policy Enforcer
	Future work

