A Decision Procedure for Fusion Logic

Antonio Cau, Helge Janicke and Ben Moszkowski

Software Technology Research Laboratory
De Montfort University

2009

STRL

STRLOVerview (2)
This talk will introduce a decision procedure for Fusion Logic
@ Introduction
e Motivation

Q Fusion Logic
@ Syntax
@ Semantics

e Decision Procedure for Fusion Logic
@ Reduction Step
@ Reduction Step v2
@ BDD Step

e Policy Enforcer
e Future work

STRLMotivation (3)

Temporal Logic:

@ Reasoning about behaviours, i.e., sequences (traces) of
system states

@ Linear Temporal Logic (LTL):
O (Next), in the next state,
O (Always), all states in the behaviour,
<& (Sometimes), exist a state in the behaviour

@ Interval Temporal Logic (ITL):
skip, behaviour of two states,
; (Chop), fusion of two behaviours,
* (chopstar), fusion of a finite number of behaviours

@ Propositional Interval Temporal Logic (PITL):
ITL with only propositional variables, i.e., Boolean values.

STRLMotivation (4)

Verification tools for Propositional Interval Temporal (PITL):

Tempura, Ben Moszkowski, Roger Hale, 1985.
Executable specification, testing

@ Lite, Shinji Kono, 1991. Tableau-based

ITL Library for interactive theorem prover PVS, Antonio
Cau, 1997. Axioms via Higher-order Logic

AnaTempura, Antonio Cau, Shikun Zhou, 1999. Runtime
verification, Tempura

DCVALID, Paritosh Pandya, 2000. MONA, decision
procedure for WS1S

PITL2Mona, Rodolfo Gomez, 2004. MONA, decision
procedure for WS1S

Javal.ite, Shinji Kono, 2008. BDD, Tableau-based

PITL Library for automated theorem prover Prover9,
Antonio Cau, 2008. Algebra, proof search

STRLSyntax of Fusion Logic

Syntax of:
State formulae:

wax= true | Q| -w | wsV w
Transition formulae:

tu= true | Q| Ow|—-t|Hh Vb
Fusion expressions:

e:= test(w) |step(t) | e Ve e ;e |e*
Fusion logic formulae:

f:= true | Q| ~f|fiVv k]| (ef

STRLState (6)

A state is a mapping State from the set of propositional
variables Var® to the set of Boolean values Bool = {it, ff}.
it is the semantic ‘true’ value and ff the semantic ‘false’ value.

State : Var® — Bool

We will use og, o1, o2, . . . to denote states and X to denote
the set of all possible states.

Let o be a state such that

oo(P) = tt
oo(Q) = ff

sTrLInterval and Length (7)

An interval o is a finite sequence of states

g :.000102...

Let =T denote the set of all possible finite intervals with at
least one state.

The length of an interval o is denoted by |o| and is the
number of states minus 1.

o= oy lo| =0
o = 0004 o] =1
o =0001...0n |o|=n

STRLPrefix, Suffix and Sub Interval (8)

Let o0 = ogo102 ... be an interval then
@ 0p...0 (wWhere0 < k < |o])
denotes a prefix interval of o
@ 0k...0|0] (whereO <k< |0’|)
denotes a suffix interval of o
@ ok...o1 (Where0 < k <1< |o))
denotes a sub interval of o

Let o = ggo10203 be an interval then

o001 is a prefix interval of o
ogi10203 is a suffix interval of o
0102 is a sub interval of o

STRLSemantic Boolean operators

Truth tables for Semantic Boolean operators:

@ not:

@ and: X Y\XandY

tt
tt
ff
ff

@ implies :

tt
ff
ff
ff

or:

Y | X implies Y

X Y\XorY

tt
ff
tt
tt

tt
tt
ff
ff

iff

tt | tt
ff | tt
tt | tt
ff | ff

9)

X Y|Xiffy

tt
tt
ff
ff

tt
ff
ff
tt

STRLSemantics of w (10)

Let [. . .] be the “meaning” function from ‘state formulae’ x X+
to {it, ff} and let o be a finite interval (¢ €) then

[truel~
el
|[_‘W]|cr

I[W1 V W2]|a-

11> 1b

it

oo(Q)

not (fwls)
(Iw1]o or [w2]5)

STRLSemantics of w (11)

Let oo(P) = tt and oo(Q) = ff.
[p Vv al-
[Pl- or [Ql-

oo(P) or oo(Q)
tt or ff
tt

STRLSemantics of t (12)

Let [[. . .] be the “meaning” function from
‘transition formulae’ x X+ to {it, ff} and let o be a finite
interval (o € £*) then

[truel» =

I[Q]IG' = UO(Q)

[-tl- = not ([tls)

[tivil, = ([tl-orltl)

[owl, =tt iff [wle..c, and|o| >0

STRLSemantics of t (13)

Let oo(Q) = 1t, 01(Q) = ffand |o| = 1.
[-(©Q)l-
not ([©Qls)

not ([Qle...0,, @nd |o| > 0)
not (1(Q) and |o| > 0)

not (ffand 1 > 0)

not (ff and tt)

tt

STRLSemantics of e (14)

Let [. . .] be the “meaning” function from
‘fusion expressions’ x X% to {it, ff} and let o be a finite
interval (o € £1) then

[test(w)]~
[step(t)]-
[e: Vv e]-

[w]s and |o| =0
[tl> and |o| =1
[eils or [e2]o

11> 1b

STRLSemantics of e (15)

The semantics of ‘chop’ is as follows [e; ; 2], = tt iff

(exists k, s.t. [e1]lo...0, = ttand [e2]o,...0,, = 1t)

Interval o is a fusion of prefix interval og . . . ok (satisfies eq)
and suffix interval o . . . 0|, (satisfies ey). State o is shared
by both.

STRLSemantics of e (16)

The semantics of ‘chopstar’ is as follows [e*], = tt iff

(existlpy...,Ins.t. hp =0and I, = |o| and
forall0 <i< n,l; < liyq and [e]s,

i+l

= 1t)

| (—e=) || (—e=) | -+ | (—e—) |
oo o

Interval o is the fusion of a finite number of sub-intervals each
satisfying e.

STRLSemantics of f (17)

Let [. . .] be the “meaning” function from
‘fusion logic formulae’ x =+ to {it, ff{} and let o be a finite
interval (o € £t) then

[true]l = tt

el = o0(Q)

 utd = not ([fl»)

[ei1 Vel = [eilsorlel-

[(e)flo =tt iff existsak, s.t.
I[ello'o...crk = tt and I[flla'k...0'|,,| =t

STRLDerived operators

Derived Fusion expression operators

len(0)
len(n + 1)
finite

101

test(true)

(18)

one state interval

step(true) ; len(n) interval with n + 2 states

(len(1))*

Derived Fusion logic operators

AN)
Of
more
empty
skip
Of
of

fin f
[e]f

12| 2 | P [b [P 1 | P TP B

all finite intervals

—(—f; v =fk) conjunction

(len(1))f
Otrue
—more
Oempty
(finite) f

- O —f
O(more V f)

—((e)—f)

f in next state

all intervals with > 2 states
all intervals with 1 state

all intervals with 2 states

f in some suffix interval

f in all suffix intervals

f holds in final state

e always followed by f

sTRLSatisfiable and valid (19)

@ A fusion logic formula f is satisfiable if and only if there
exists an interval o such that [f], = tt

@ Decision procedure checks whether f is satisfiable or not,
when f is satisfiable a satisfying interval is generated.

@ A fusion logic formula f is valid if and only if for all
intervals o, [f], = it

@ fis not valid if and only if —f is satisfiable

i.e., satisfying interval for —f will represent
a counter example for f's validity

f is valid if and only if —f is not satisfiable

STRLDecision Procedure

@ Reduction Step:
transform f into init A O I

@ BDD Step:

transform init A O I into a BDD-based
satisfiability problem

(20)

sTRLReduction Step (21)

Transform FL formula f into an equivalent reduced form
init A O
@ init: a state formula ry
@ [: an invariant, /\;:f(r,- = t;) (for k > 1) where
r; is a dependent Boolean variable (not appearing in f)
tj is a transition formula

sTRLReduction Step (22)

Let R(f) be a symbolic reduction function that transform any
FL formula f into its corresponding invariant of the form

NiZ3(ri = t).

Idea: R () introduces dependent variables r;’s to ‘rewrite’ all
the FL temporal operators except O.

Let |R(f)| denote the number of distinct dependent variables
in R(f).

sTRLReduction Step (23)

Transformation of Fusion Logic Formula:

Let X, X; and X, denote non state formulae and w a state
formula.

f R(f)
w n=w
=X 'R,(X) AN (I‘k+1 = —|I'k)
where k = |R(X)|
X1V Xa R(X1) AR(X2) T A Fyks1 = (1 V Fiyj)
where j = |R(X1)| and k = |R(X2)|
(e X R(X) A (R({e)q) T k)[q « r«]

where q is a fresh variable and k = |R(X)|

where, for any invariant I, the operation /I 1 k is defined to be
the invariant where the subscripts of dependent variables r;
are shifted by k, i.e., ry becomes rj .

sTRLReduction Step (24)

Transformation of Fusion expressions:
We are left with only FL formulae of the form (e)w

We will use the following reduction rules to rewrite them

R(f)

f
(test(w’))w
(step(t))w
(61 V e)w
(e1)W

rn=(wAaAw)
rH=(tNOw)
R((en)w V (e2)w)
R({e1)((e2)w))

sTRLReduction Step (25)

Reduction function for (e*)w is problematic because e could
be valid for intervals with only one state.

sTRLReduction Step (29)

Reduction function for (e*)w is problematic because e could
be valid for intervals with only one state.
Solution: a function ¢ is introduced which transforms an
arbitrary fusion expression e into another formula ¢(e) such
that c(e) = (e A len(n)) holds (n > 1).
Note: (e*)w = (c(e)*)w holds.
e c(e)

test(w) test(—true)

step(t) step(t)

e Ve c(e)Vc(e)

e ;e c(e);ex Ve ;c(e)
e* c(e);e*

Reduction of (e*)w is then follows

(er)w R(wV (c(e))q)[q « r]
where q is a fresh variable and
k=|R(wV (c(e))q)|

STRLExample

Given FL formula
(step(A)*)(B Vv C) V (step(A) ; test(B))D

Then init is rg.
The corresponding invariant I is as follows:

e =13V rs
AN Is=AAN0OnR
AN n=DANB
N IBR=n1RV D
AN h=AANOnR
AN n=BvC

sTRLReduction Step v2 (27)

Reduction technique that introduces fewer dependent
variables.

Transform FL formula f into following equivalent reduced form
init A O]
where
init = Ry(f)
I = Ro(f)

For k € {0,1}, Rk (f) is a transition formula, R4 () is a state
formula and R (f) is a transition formula.

sTRLReduction Step v2 (28)

Let X, X; and X5 denote non state formulae and w a state
formula then the definition of Transition formula R (f) is as

follows:

f Ri(f)

w true

(test(w))X Rk(X)

(step(t))X k=0: (’<step(t)>x = (t AN ORy(X))) N Ro(X)
k=1: 'R,o(X)

(e1V &)X Ri((e1)X V (e2)X)

(e1; @)X Ri((er)(e2)X)

(e*)X (r(e*)X = R'1 (X1)) A R4 (X1),
where Xj is X V (c(€))re~yx

- X Rk(X)

X1V Xz Ri(X1) A Ri(X2)

So only the step(t) and e* case will introduce a dependent

variable.

sTRLReduction Step v2 (29)

Let X, X; and X, denote non state formulae and w a state
formula then the definition of state formula R (f) is as follows:

f Ri(f)

w w

(test(w))X w A R} (X)

(step(t))X Kk =0: rgiepy)x
k=1:tAORyX)

(&1 Ve X Ri((e)XV (e2)X)

(e1; @)X Ri((er){e2)X)

<e*>X Fexyx

X —|T\’,;((X)

X; Vv Xz Ri(X1) V Ri(X2)

STRLExample (30)

Given again FL formula
(step(A)*)(B Vv C) V (step(A) ; test(B))D
we now use Reduction Step v2.

The initis rx, Vv rx, where
X1 = (step(A)*)B Vv C and X3 = (step(A)) (test(B))D.

The corresponding invariant:

ry, =(BVv C)V (AAOry,)
AN g =ANO(B A D)

So the number of dependent variables has been reduced from
6 to 2.

STRLBDD Step (31)

Transform init A O I into BDD based satisfiability problem.

init: a state formula ry

I: an invariant, /\;zf(r,- = t;) (for k > 1) where
r; is a dependent variable and

t; is a transition formula

Let us examine the ‘Always’ operator

init ANOI e ° ° °

STRLBDD Step (32)

We know that invariant I only contains O (next) as temporal
operator. So it can only constrain the first two states of each
suffix interval.

int AOI e ° ° ° °

STRLBDD Step (33)

Introducing BDDs I';’s:

@ 4 represents the state formula init.

@ I, captures all pairs of states corresponding to two state
intervals satisfying invariant /. This can be done by
replacing all variables in the scope of any O by a primed
version and delete the O.

@ I3 captures the behaviour of invariant I in an interval with
only 1 state. This can be done by replacing each O
construct by false, i.e., —true.

init ANOI e ° ° ° °

STRLExample
Given FL formula
(step(A)*)(B Vv C) V (step(A) ; test(B))D
With corresponding invariant:

rE=r\Vrs AN s=AAN0OnR A
n=DANB N I3R=nRVDIH AN
Ln=AANOr N n=BVvVC

Thenly = rg

M =
lk=rVir A rszA/\r‘; A\
n=DANB N B=KrVINH A
n=AANryF N nh=BvC

M =
rE=r\Vrs AN rs=AANfalse A
n=DAB N I3R=nRV I AN
rn=AANfase AN n=BvVvVC

STRLBDD Step (35)

Encoding as a BDD-based satisfiability problem:

@ We use IN'; and I'q to iteratively calculate a sequence of
BDDs Ay, ..., Ap, so that for any I, A, described all
states which can be reached from 'y in exactly n steps
using Ia.

STRLBDD Step (35)

Encoding as a BDD-based satisfiability problem:

@ We use IN'; and I'q to iteratively calculate a sequence of
BDDs Ay, ..., Ap, so that for any I, A, described all
states which can be reached from 'y in exactly n steps
using .

@ We determine at each iteration whether BDD I's A A, is
true or not. If false we must continue to iterate and if true
then there is exists some state satisfying I's which can be
reached in n steps from 1, so we can stop the iteration,
i.e., original f is satisfiable.

STRLBDD Step (35)

Encoding as a BDD-based satisfiability problem:

@ We use IN'; and I'q to iteratively calculate a sequence of
BDDs Ay, ..., Ap, so that for any I, A, described all
states which can be reached from 'y in exactly n steps
using Ia.

@ We determine at each iteration whether BDD I's A A, is
true or not. If false we must continue to iterate and if true
then there is exists some state satisfying I's which can be
reached in n steps from 1, so we can stop the iteration,
i.e., original f is satisfiable.

@ During the iteration process we maintain a BDD
\o<i<n Qi representing the set of all states so far
reachable from I'1. If (Vo<j<p Bi) = (Vo<i<nir Bi), 1€,
no new states are found, then we stop the iteration and if
we can’t find a state that satisfies I's then original f is not
satisfiable.

STRLBDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let A, be that set of states for which '3 A A, is true.

@ If there are no independent variables (only r; variables)
then any interval of length m will satisfy f.

STRLBDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let A, be that set of states for which F'3 A A, is true.

@ If there are no independent variables (only r; variables)
then any interval of length m will satisfy f.

@ If there are independent variables then
Find a value assignment o, for the independent variables
for BDD Ap, i.e., choose one state o, of Ap.

STRLBDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we

proceed as follows.
Let A, be that set of states for which F'3 A A, is true.

@ If there are no independent variables (only r; variables)
then any interval of length m will satisfy f.

@ If there are independent variables then
Find a value assignment o, for the independent variables
for BDD Ap, i.e., choose one state o, of Ap.
Compute Pren,_1 denoting those states of A,,_¢ that
lead via s to state o, (Weakest precondition of ', and
om). Again choose one state o, 1 of Prep,_1.

STRLBDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let A, be that set of states for which F'3 A A, is true.

@ If there are no independent variables (only r; variables)
then any interval of length m will satisfy f.

@ If there are independent variables then
Find a value assignment o, for the independent variables
for BDD Ap, i.e., choose one state o, of Ap.

Compute Pren,_1 denoting those states of A,,_¢ that
lead via s to state o, (Weakest precondition of ', and
om). Again choose one state o, 1 of Prep,_1.

Continue until we reach Prey and then choose state oy.

STRLBDD Step (36)

To construct a satisfying interval (in case f is satisfiable) we
proceed as follows.
Let A, be that set of states for which F'3 A A, is true.

@ If there are no independent variables (only r; variables)
then any interval of length m will satisfy f.

@ If there are independent variables then
Find a value assignment o, for the independent variables
for BDD Ap, i.e., choose one state o, of Ap.
Compute Pren,_1 denoting those states of A,,_¢ that
lead via s to state o, (Weakest precondition of ', and
om). Again choose one state o, 1 of Prepy_1.
Continue until we reach Prey and then choose state oy.
The states g . . . om_10m Will then represent a (minimal)
satisfying interval o for f.

sTRLImplementation (37)

X% HECK =[=]=]+|a|m
Exit

Output] Input] Reduce] Gammaz] Gammaa]

*xxTesting for satisfiability with finite time. =

0 iterations performed.

Satisfiable with finite time.

*xxNow start to find a model.

Here is a model with 1 state:
State 0

TRTR
i

Cudd current number of live nodes=273
Cudd peak number of live nodes=276

invariant time: 87082 microseconds per iteration
quit time; 79 microseconds per iteration

[4]r]

4 [4]»
sat { { chopstar { step A } > {Bor C }or { stepfp ; test B> { D} }

[

l4le]

4 R

sTRLPolicy Enforcer (38)

Access control policy rules are of the form [e]w

@ w: state formula, access control authorisations: positive,
negative and decision.

@ e: fusion expression, premise: describing history
behaviour

@ Use Decision Procedure to check policy rules properties,
conflicts, safety, etc.

@ Enforcement:
Policy rule is never violated

sTRLPolicy Enforcer (38)

Access control policy rules are of the form [e]w

[lelw], =tt iff forall k, s.t.
[els,...c. = ttimplies [wlo,...q,, = tt

@ w: state formula, access control authorisations: positive,
negative and decision.

@ e: fusion expression, premise: describing history
behaviour

@ Use Decision Procedure to check policy rules properties,
conflicts, safety, etc.

@ Enforcement:
Policy rule is never violated

Access control policy rule does not constrain the interval
length and are ‘for all’-type of formulae

sTRLPolicy Enforcer (39)

Enforcing policy f means once a satisfying interval o has
been found continue to find the ‘next’ satisfying interval o-o”,
i.e., don’t stop at the first interval o but try to extend it with o”’.
Repeat this extension step.

initANOI e ° ° °

sTRLPolicy Enforcer (39)

Enforcing policy f means once a satisfying interval o has
been found continue to find the ‘next’ satisfying interval o-o”,
i.e., don’t stop at the first interval o but try to extend it with o”’.
Repeat this extension step.

init ANOI e ° ° ° ° ° °
((=1-){I)
(I (-1-)
(H{-1-)
n
(-I-)
-1

STRLFuture work

Compare with JavalLite and PITL2ZMONA
Introduce all PITL derived operators in FL
Extend to infinite time

Extend to integer variables

Combine Decision Procedure with theorem prover
Prover9

@ Compare FL enforcement with other enforcement
frameworks

@ Optimise FL enforcement
@ Compare with tools for mu-calculus

(40)

STRLANYy...

QUESTIONS?

(41)

	Introduction
	Motivation
	Fusion Logic
	Syntax
	Semantics

	Decision Procedure for Fusion Logic
	Reduction Step
	Reduction Step v2
	BDD Step

	Policy Enforcer
	Future work

