A Note on Expressing Policy Rules in Fusion Logic

Antonio Cau

STRL
November 1, 2011

Abstract

We have before expressed our policy rules in Interval Temporal Logic. This makes it
possible to verify properties over those policies. Recently we have a model checker for Fusion
Logic a logic as expressive as Propositional Interval Temporal Logic but which a very much
restricted syntax. This note explains why expressing strong policy rules can be problematic
in Fusion Logic and describes a way of solving this problem.

1 Propositional Interval Temporal Logic

Propositional Interval Temporal Logic (PITL) is a discrete, linear temporal logic which includes
a basic construct for sequential composition and an analog of Kleene star!.
1.1 Syntax of PITL
The syntax is described in Table 1 where
e skip is an interval (sequence) of 2 states.
e f1; fois called ‘f; chop fo’ and denotes sequential composition of two intervals.

e f*is called ‘f chopstar’ and denotes finite iteration of an interval.

1.2 Derived PITL formulae

Of =skip; f next f, f holds from the next state.

®©f=-0-f weak next f, f holds from the next state or interval is empty.

more = Otrue unit interval, i.e., interval with > 2 states.

empty = “more empty interval, i.e., an one state interval.

Of = true; f sometimes f, i.e., any interval such that f holds over a suffix of that interval.
gf=-<o-f always f, i.e., any interval such that f holds for all suffixes of that interval.

O f = f;true diamond-i f, i.e., any interval such that f holds over a prefix of that interval.

INote: we restrict ourselves to finite time only in this note.

PITL formulae
Ju= ploflfivfelskip| fi;fol f*

Table 1: Propositional Interval temporal Logic

Of=-(®—-f) boxi f,ie., any interval such that f holds for all prefixes of that interval.

@ f = true; f;true diamond-a f, i.e., any interval such that f holds over a subinterval of that
interval.

@ f=-(®—-f) box- f,ie., any interval such that f holds for all subintervals of that interval.
fin f = O(more v f) final f, i.e., f holds in the final state.
len(0) = empty interval of length zero.

len(n + 1) = skip;len(n) interval of length n + 1, for n > 0.

1.3 Semantics of PITL

The main semantic notion is interval which is a sequence of states. Let X denotes the set of states,
¥t denote the set of non-empty finite sequences of states, o denote an interval, o € ¥+, Let [|
be the “meaning” (semantic) function from PITL Formulae x X% to {tt, ff}.

o [p], = tt iff og(p) = tt

[- flo = tt iff not [f]o = tt

. [[f 2]]0 = tt iff [[f1]]g =tt or [[fgﬂg =tt
[

skip], = tt iff |o| = 1 where |o| denotes length of o and is defined as number of states minus

f1; fo]o = tt iff (exists a k, s.t.

[filoo...cr = tt and [fo]o,. 0\, = tt)

o =ttiff

(exist lg, ..., 1, s.t. lo =0 and ,, = |o| and

forall 0 <i< n, l; < li+1 and [[f]]glimng1 = tt)

For any interval o and PITL formula f, if [f], = tt, then f is said to be satisfiable. A PITL
formula f satisfied by all intervals is valid, denoted as = f.

Note: = f is valid iff = f is not satisfiable, i.e., we can express validity of a PITL formula in
terms of satisfiability.

1.
[
(
[

2 Policy rules in PITL

Semantics of rules Policy rules define the behaviour of the access control variables. The
consequence of a rule determines the type of the rule and the subjects, objects and actions the
rule applies to. The operator always-followed-by [4] is used to capture the relation between the
premise of a rule and its consequence. Let us first define the semantics of a premise.

The syntax that is used in the premise is actually a subset of ITL formulae. The semantics of
a rule premise is then as follows:

I

[pri;pra
[pr1 and pry
[pri or pry

[pra] 5 [pr]
[pri] A [pr2]

I

IR

I
I
[= [pra] v [prl
[sometime pr] = <[pr]
[always pr] = Ofpr]
[keep pr] = @ (skip > [pr])
[if be then pry else pra] = ([be] A [pri]) v (—[be] A [pr2])
I

[e : pr] = len([e]) A [pr]

state formulae
W= true|p | Wiv Wy | W

transition formulae
T:= W|OW|ThvTy| ~T

fusion expressions

E = test(W) |step(T)| E1v Es | By ; By | E*

fusion logic formulae
F:u= true|p | ~F|FvF|(EF

Table 2: Syntax of FL

The operator always followed by is defined as follows:

f = w=dE(f D fin(w)) (1)

The intuition of the operator is that whenever f holds for a prefix interval then w holds in the
last state of that interval.
The semantics of individual rule is then defined as follows:

[allow (su, ob, ac) when pr] Z[pr] ~ autho™ ([su], [0b], [ac])
[deny (su,ob, ac) when pr] =[pr] — autho™ ([su], [ob], [ac])
[decide (su, ob, ac) when pr]=[pr] — autho([su], [ob], [ac])

The operator strong always followed by is defined as follows:

[< w=8(f =fin(w)) (2)

The intuition of the operator is that f holds for a prefix interval iff w holds in the last state of
that interval.

The ‘strong always followed by’ is used in the verification of properties of policies. So when
one wants to use a model checker one has to use a rules with this operator.

3 Fusion Logic

We introduce Fusion Logic (FL) in order to model check policy rules, i.e., built a BDD based
model for them.

Fusion Logic augments conventional Propositional Temporal Logic (PTL) [1] with the fusion
operator. Note: the fusion-operator (E)F is basically a “chop” that does not have an explicit
negation on the left hand (as fusion expression) side except in test() and step(). The expres-
siveness of FL is the same as PITL. The main differences concern computational complexity,
naturalness of expression for analytical purposes, and succinctness. Fusion Logic is closely related
to Propositional Dynamic Logic (PDL) [2].

3.1 Syntax

Let p be a propositional variable. We introduce the four syntactic categories of Fusion Logic in
Table 2.

Note: the fusion-operator (E)F is basically a ‘chop’ that does not have a negation on the left
hand side.

3.2 Derived FL formulae

Before we give our policy rule construct in Fusion Logic we first introduce some derived fusion
expressions.

lene(0) = test(true) interval of length O (one state interval).

len.(n + 1) = step(true) ; len.(n) interval of length n + 1, for n > 0.

skip, = len.(1) unit interval, i.e., interval of length 1 (two state interval).

O, E =skip, ; E next E, F holds from the next state.

finite, = skip, finite interval, i.e., any interval of finite length.

more, = O, finite, non-empty interval, i.e., any interval of length at least one.

O E = finite, ; E sometimes F, i.e., any interval such that F holds over a suffix of that interval.

We also introduce the following derived constructs which will enable us to express policy rules in
FL.

Fy A Fy = —(—Fy v Fy) the ‘and’ of two fusion logic formulae defined using the Morgan.

OF = (skip,)F' next F, F holds from the next state.

more = Otrue non-empty interval, i.e., any interval of length at least one.

empty = ~more empty interval, i.e., any interval of length zero (just one state).

skip = Oempty unit interval, i.e., any interval of length 1.

OF = (finite.) ' sometimes F, i.e., any interval such that F' holds over a suffix of that interval.
OF =-0-F always F, i.e., any interval such that F holds for all suffixes of that interval.
fin F = O(more v F) final F, i.e., F holds in the final state.

Policy rules can now be expressed as follows
E — W = —=({finite, ; E)~W)

As can be seen the premise of a policy rule is a fusion expression. If the premise is a state formula
we can expressed the policy rule as follows

Wi = Wy = =({finite, ; test(W1) ; finite,)~ W2)

3.3 Semantics of FL

A state is a mapping State : Exp from the set of propositional variables Var to the set of values
{tt, ff}. An interval o is a finite sequence of states

g 0'00'10'2...0"0‘

where |o| denotes the length of an interval o and is equal to the number of states minus 1. Let &
denote the set of all possible intervals.

Let [] be the “meaning” function from Formulae x ¥ to {tt, ff} and let ¢ = 00y ..., 01, be an
interval then (i) 0 ... 0 (where 0 < k < |o|) denotes a prefiz interval of o, (ii) o ... 0|, (Where 0 <
k < |o|) denotes a suffiz interval of o and (iii) oy ...0; (where 0 < k <[< |o|) denotes a sub
interval of 0. For z € {W,T,E, F}, y € {W,T,F} and z € {E, F}.

o [true], = tt

o [p], = tt iff og(p) = tt

o [z1 v 2], = ttiff [21], = tt or [22], = tt
o [~y]o = tt iff not Jy], = tt
o [OW], = tt iff [W]s, .o, and |o| >0
o [test(W)], = tt iff [W],, and |o| =0
o [step(T)], = tt iff [T]s,...0, and |o| =1
o [E;z], =ttiff exists a k, s.t. [E]o,.0p = tt and [2]o,. 0, = tt
o [E*], = tt iff
(exist lg,...,l, s.t. lg =0 and ,, = |o| and

for all 0 <i < n,l; <l;y; and [[E]]Uli_ = tt)

<Ol
o (E)F], =ttiff [E; F], =tt

For any interval o and Fusion Logic formula F, if [F], = tt, then F is said to be satisfiable. A
Fusion Logic formula F satisfied by all intervals is valid, denoted as |= F.

Note: = F is valid iff = F is not satisfiable, i.e., we can express validity of a formula in terms
of satisfiability.

4 Policy rules in FL

We want to investigate whether it is possible to express the ‘strong always followed by’ in Fusion
Logic.
The following are a few well know lemmas

Lemma 1

(~(r=9)=(-p) =0

fin w = true ; (empty A w)

—(fin w) = true; (empty A ~w)

w = (empty A w) ; true

(=) = fin (w)) = (=] fin (w)) v (F » ~fin (w)))
(f ~ ~fin (w)) = f ; (empty A ~w)

(51 fin(w) = 1 (empty » w)

() =0(@ f)
fos(fivihe)ifs=fosfisfavfo;fe;fs

SR D Q0

Proof 1 (a) - (e) have been proven with the FLCHECK tool. (f) - (i) are proven with the prover9
tool.

Now we will rewrite f — w as follows:
f +— w using definition of ‘strong always followed by’

(f = fin (w))
Using Lemmal (h):
33 (f = fin (w)))
Using definition of O:
=(true; =(D (f = fin(w))))

Using definition of @:
—(true; = ((f = fin (w))) ; true)

Using Lemmal(a):
—(true; (((— f) = fin (w))) ; true)

Using Lemmal(e):
(true; (= f A fin(w)) v (f A —fin(w))) ; true)
Using Lemmal(f) and (g):

—(true; (= f 5 (empty A w) v f; (empty A mw)) ; true)
Using Lemmal (i):
—(true; (- f; (empty A w)) ; true v true; (f ; (empty A —w)) ; true)
Using the De Morgan:
—(true; (= f) ; (empty A w) ; true) A —(true; f; (empty A ~w) ; true)

Using Lemmal(d):
~(true; (= f); w) A ~(true; [(- w))

We can easily see that —(true; f; (-mw)) can be written in FL if f is an fusion expression, i.e.,
(< finitee 5 f > (~w)).

However, —(true ; (= f) ; w) is problematic because using the same as above would yield: —(<
finite. ; (- f) > (w)). We must must devise a strategy that can rewrite (— f) (where f is a fusion
expression) into a fusion expression without negation.

Lemma 2 can be used to rewrite the negation of an fusion expression. The idea is that a fusion
expression starts either with a ‘test’ or a ‘step’. You can use Lemma 2(a) and (b) to rewrite those
kinds of fusion expression. Lemma 2(c) deals with the negation of an ‘or’ type of fusion expression
where both ‘or’ branches start with a test. Lemma 2(d) deals with the case that one branch start
with a ‘test’ and the other branch with a ‘step’. One basically only rewrites the branch with the
‘test’. Lemma 2(e) is similar to (d) but now the ‘test’ branch has only one ‘test’. Lemma 2(f)
deals with the case that both branches in the ‘or’ start with a ‘step’. For the ‘chop’ and ‘chopstar’
fusion operator one can use again Lemma 2(a) and (b).

Lemma 2

a —(test(W); E) = (test(—W) ; finite,) v - E
—(step(T) ; E) = (step(—T) ; finite,) v test(true) v (step(true) ; 7 F)
—((test(Wy) ; Eo) v (test(Wy) ; E1)) = (test(— Wy A = W7) ; finite,) v
(test(—| Wo) N _‘El) \ (test(ﬂ Wl) ; _'Eo) \% _‘(E() \ El)
4 ~((test(W) ; Eo) v (step(T) ; Ey)) =
(test(W) ; step(—T) ; finite.) v (test(— W) ; step(true) ; ~ Eq) v
test(—- W) v =(Ey v step(T) ; E1)
e (test(true) v (step(T); E1)) =
(step(—T) ; finite,) v (step(true) ; 7 Ey)
o ((step(To) s Eo) v (step(Ty) ; B)) =
test(true) v (step(— Ty A = T7) ; finite.) v
(step(—Tp) ; = E1) v (step(~T1) ; ~ Ep) v
(step(true) ; ~(Ey v Ey))

o <o

Proof 2
(a):
—(test(W) ; E)

Using basic ITL reasoning:
—((test(W) ; finite,) A E)

Using De Morgan:
—(test(W) ; finitee) v (- E)

Using basic reasoning of test:
(test(— W) ; finite,) v (— E)

(b):
~(step(T) ; E)

Definition of step:
~((skip A T) ; E)

Using basic ITL reasoning:
—(((skip A T) ; finite,) A (skip; E))

Using De Morgan:
—((skip A T) ; finite.) v —(skip ; F)

Using basic ITL reasoning:
(test(true) v ((skip A = T) ; finite,)) v —(skip ; E)
Using basic ITL reasoning:
(test(true) v ((skip A =T ; finite,)) v (test(true) v (skip; = E))
Simplifying, definition step():
test(true) v (step(—T) ; finite.) v (step(true) ; 7 E)

(c):
j(('EGS'C(VV(J) N Eo) \ (test(Wl) 7E1))

Using De Morgan:
_‘((teSt(Wo) ;Eo) A _‘(teSt(Wl) ;El))

Using (a) twice:
((test(—~ W) ; finite,) v = Ep) A ((test(— Wh) ; finite,) v 7 Ey)

Simple rewriting:
((test(—Wyp) ; finite.) A (test(— W) ; finite.)) v
((test(—= W) ; finitee) A = E7) v
((test(— W) ; finitec) A 7 Ep) v

(

Using ITL reasoning, test reasoning twice and De Morgan:

(test(— Wy A =~ W) ; finite.) v
(test(—Wo) ; (—Ey)) v
(test(=W1) 5 (= Eo)) v

_‘(EO \% El)

(d):
~((test(W) ; Eo) v (step(T) ; Ev))

Using De Morgan:
—(test(W) ; Ep) A —(step(T) ; E1)

Using (a) and (b):

((test(— W) ; finite.) v = Eg) A
((step(—T) ; finite.) v test(true) v (step(true) ; ~ E1))

Using simple rewriting:

) ; finite.) A (step(—T) ; finite.)) v

) ; finite.) A test(true)) v

) ; finite.) A (step(true) ; 7 E1)) v

= Eg) A ((step(—T) ; finitee) v test(true) v (step(true) ; = E1)))

((test(= W) ; step(—T) ; finite.))

(test(—W)) v

(test(— W) ; step(true) ; (— Eq))

((—m Ep) A ((step(—T) ; finite.) v test(true) v (step(true) ; = E1)))

Using (b) reverse:
((test(— W) ; step(—T) ; finite.)) v
(test(=W)) v
(test(~ W) ;step(true) ; (~ By) v
((= Eo) n ~(step(T) ; E1))

Using De Morgan:
((test(— W) ; step(—=T) ; finite.)) v

(test(mW)) v
(test(— W) ; step(true) ; (m Eq)) v
(E(] (step(T) ; El))

(e):
—(test(true) v (step(T) ; E1))

Using De Morgan:
—(test(true)) A —(step(T) ; E1)

Using ITL reasoning:
(step(true) ; finite.) A —(step(T) ; Eq)

Using (b):
(step(true) ; finitee) A
((step(—T) ; finite.) v test(true) v (step(true); —~ E7))

Using stmple rewriting:

((step(true) ; finitee) A (step(—T) ; finitee)) v
((step(true) ; finite.) A test(true)) v
((step(true) ; finitee) A (step(true) ; = Ey))

Using ITL reasoning:
(step(—T) ; finite.) v
(step(true) ; " Eq)

(f):
—((step(Tv) ; Eo) v (step(T1) ; En))

Using De Morgan:
~(step(To) ; Eo) n ~(step(T1) ; E1)

Using (b):

((step(—Tp) ; finitee) v test(true) v (step(true) ;)
((step(—T1) ; finitee) v test(true) v (step(true) ; — E1))

Using simple rewriting:

((step(—Tp) ; finite.) A (step(—T1) ; finite.)) v
((step(—Tp) ; finite.) A test(true)) v
((step(—Tp) ; finite.) A (step(true) ; 7 Ey)) v
(test(true) A (step(—T7) ; finite.)) v
(test(true) A test(true)) v

(test(true) A (step(true) ; ~Eq)) v
((step(true) ; = Ep) A (step(—T1) ; finite.)) v
((step(true) ; = Ep) A test(true)) v
((step(true) ; = Eg) A (step(true) ; = Ey))

_=="

Using ITL reasoning and De Morgan:

Lemma 3

a —(F ;test(W)) = (finite, ; test(—-W)) v - F

—(E ;step(T)) = (finite, ; step(—T)) v test(true) v ((— E) ; step(true))
¢ ((Eg;test(Wy)) v (Eq ; test(Wy))) = (finite, ; test(—Wo A = W7)) v

d ~((Eo: test(W)) v (B ; step(T"))
(finite, ; step(—T) ; test(W)) v ((
)

e —(test(true) v (E; ;step(T))) =
(finite. ; step(—T)) v ((— E1) ; step(true))

f —((Eo;step(Tp)) v (Eq ;step(Th))) =
test(true) v (finite. ; step(= Ty A = 11)) v
((m Ey) ;step(—Tp)) v ((m Ep) ; step(—T1)) v
(—(Eo v E) ; step(true))

References

[1] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specifica-

tion. New York: Springer, 1992.

[2] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. Cambridge, MA: MIT Press, 2000.

[3] B. Moszkowski, “A hierarchical analysis of propositional temporal logic based on intervals,”
in We Will Show Them: FEssays in Honour of Dov Gabbay, S. Artemov, H. Barringer, A. S.
d’Avila Garcez, L. C. Lamb, and J. Woods, Eds. King’s College, London: College Publications

(formerly KCL Publications), 2005, vol. 2, pp. 371-440.

[4] F. Siewe, “A Compositional Framework for the Development of Secure Access Control Sys-
tems,” Ph.D. dissertation, Software Technology Research Laboratory, Department of Computer

Science and Engineering, De Montfort University, Leicester, 2005.

