
Concurrent Enforcement of Usage Control Policies
Helge Janicke, Antonio Cau, François Siewe, Hussein Zedan

Software Technology Research Laboratory,
De Montfort University, Leicester, UK LE1 9BH

Email: {heljanic, acau, fsiewe, hzedan}@dmu.ac.uk

Abstract— Policy-based approaches to the management of
systems distinguish between the specification of requirements,
in the form of policies, and their enforcement on the system.
In this work we focus on the latter aspect and investigate the
enforcement of stateful policies in a concurrent environment. As
a representative of stateful policies we use the UCON model
and show how dependencies between policy rules affect their
enforcement. We propose a technique for enforcing policies
concurrently based on the static analysis of dependencies between
policies. The potential of our technique for improving the efficacy
of enforcement mechanisms is illustrated using a small, but
representative example.

I. INTRODUCTION

Policy-based approaches to the management of systems rely
on the ability of administrators to define their requirements
concisely in form of policies and on mechanisms that enforce
these policies in the system. In the recent years much re-
search effort has been placed on the development of policy
languages, improving their expressiveness to capture complex
requirements and tool-support for policy specification and
analysis. However, work on the actual design of mechanisms
that enforce policies in the system and their efficiency and
correctness has been payed less attention. In this paper we
show how the introduction of stateful policies, e.g. attribute-
based policies, history-based policies or those that can express
dynamic separation of duty requirements, impacts on the
design and implementation of enforcement mechanisms. We
highlight potential problems that can occur when many con-
current requests are processed and provide a simple algorithm
for the static analysis of policies that is used to define sufficient
constraints on the concurrency of the enforcement mechanism
to avoid conflicts.

We base our discussion on the well-known UCON model [1]
that presents an extension of more traditional access control,
allowing for ongoing control of long standing interactions. We
show how the specification of a single usage process can be
structured to clearly separate the user, the controller and the
system in the design. We model the controller using Statecharts
[2] and provide a semantics in Interval Temporal Logic [3].

In Section II we give a short introduction to Interval Tem-
poral Logic and its use in the paper to formalise the presented
Statecharts and additional constraints on the behaviour of
the enforcement mechanism that represent policies. In Sec-
tion III we outline the UCON model and provide a Statechart
representation that distinguishes the user, controller and the
system as orthogonal components. In Section IV we formalise
a simplified controller for stateless policies and build upon

this to show how stateful UCON policies can be enforced.
We show that a stateful policy introduces potential conflicts
between concurrently controlled usage processes using a small
example. In Section V we present a straight-forward solution
that processes all requests interleaved and is thus avoiding
conflicts. We discuss the benefits and drawbacks of this
solution w.r.t. large-scale distributed systems. In Section VI
we then present a simple algorithm that statically analyses
the constraints on the controller imposed by the policy and
determines potential conflicts. The resulting dependency graph
is then used to constrain the behaviour of the initially presented
controller such that conflicts are avoided. In Section VII we
review related work. We conclude the findings of this paper
in Section VIII and outline future work in this area.

II. PRELIMINARIES

ITL is used in this work for two reasons, firstly it allows
us to express accurately the behaviour of the controller w.r.t.
events, secondly we use ITL to constrain the behaviour of the
controller and show how UCON policies can be expressed as
such constraints. Temporal logic is a well suited formalism to
express behaviours of a system. The reason for choosing ITL
over other temporal logic formalisms is the integration of our
previous work on the refinement of history-based policies and
its compositionality that is evident in the specification of the
presented Statecharts.

The key notion of ITL is an interval. An interval σ is
considered to be a (in)finite sequence of states σ0, σ1 . . .,
where a state σi is a mapping from the set of variables Var
to the set of integer values Z. The length |σ| of an interval
σ0 . . . σn is equal to n (one less than the number of states in
the interval, so a one state interval has length 0).

The syntax of ITL is defined in Figure 1 where µ is an
integer value, a is a static variable (doesn’t change within an
interval), A is a state variable (can change within an interval),
v a static or state variable, g is a function symbol and p is a
predicate symbol.

Expressions
e ::= µ | a | A | g(e1, . . . , en) | ©v | fin v

Formulae
f ::= p(e1, . . . , en) | ¬ f | f1 ∧ f2 | ∀v q f |

skip | f1 ; f2 | f∗

1: Syntax of ITL

The informal semantics of the most interesting constructs
are as follows:

• skip: unit interval (length 1, i.e., an interval of two states).
• f1 ; f2: holds if the interval can be decomposed

(“chopped”) into a prefix and suffix interval, such that
f1 holds over the prefix and f2 over the suffix, or if the
interval is infinite and f1 holds for that interval. Note the
last state of the interval over which f1 holds is shared
with the interval over which f2 holds. This is illustrated
in Figure 2.

.
σ0 σk σ|σ|

f1 f2

2: Informal Semantics of f1 ; f2

• f∗: holds if the interval is decomposable into a finite
number of intervals such that for each of them f holds,
or the interval is infinite and can be decomposed into an
infinite number of finite intervals for which f holds. This
is illustrated in Figure 3.

.
σ0 σi σj σk σ|σ|

f f f

3: Informal Semantics of f∗

• ©v: value of v in the next state when evaluated on an
interval of length at least one, otherwise an arbitrary
value.

• fin v: value of v in the final state when evaluated on a
finite interval, otherwise an arbitrary value.

A. Derived Constructs

The following is a list of some derived constructs that are
used in the remainder of this paper.
©f =̂ skip ; f next f , f holds from the next state. Exam-

ple: ©(X = 1): Any interval such that the
value of X in the second state is 1 and the
length of that interval is at least 1.

more =̂ ©true non-empty interval, i.e., any interval of
length at least one.

empty =̂ ¬more interval, i.e., any interval of length zero
(just one state).

inf =̂ true ; false infinite interval, i.e., any interval of infinite
length.

finite =̂ ¬ inf finite interval, i.e., any interval of finite
length.

3f =̂ finite ; f sometimes f , i.e., any interval such that
f holds over a suffix of that interval.
Example: 3X 6= 1: Any interval such that
there exists a state in which X is not equal
to 1.

2f =̂ ¬3¬ f always f , i.e., any interval such that f
holds for all suffixes of that interval. Ex-
ample: 2(X = 1): Any interval such that
the value of X is equal to 1 in all states
of that interval.

3i f =̂ f ; true diamond-i, i.e., any interval such that f
holds over a prefix sub-interval.

2i f =̂ ¬3i ¬ f box-i, i.e., any interval such that f holds
over all prefix sub-intervals.

3a f =̂ 3(3i f) diamond-a, i.e., any interval such that f
holds over a sub-interval.

2a f =̂ ¬3a (¬ f) box-a, i.e., any interval such that f holds
over all sub-intervals.

keep f =̂2a (skip ⊃ f) keep f , i.e., any interval such that
f holds over all unit sub-intervals.

fin f =̂ 2(empty ⊃ f) final state, i.e., any interval such
that f holds in the final state of that
interval.

v := e =̂ (©v) = e assignment, i.e., the value of v will be e
in the next state.

v← e =̂ finite ∧ (fin v) = e temporal assignment, i.e., the
value of v in the final state will be the
value of e.

stable v =̂ 2(more ⊃ v := v) remain stable, i.e., the value
of v remains stable in the interval.

B. State Semantics

The state of an independent system component c is modelled
by the state variable Sc that can assume any of the distinct
constants x ∈ statesc in the set of states of that component.
Each event is modelled as a Boolean state variable Eevent .
Generating an event means setting Eevent = true. α and ω
denote sets of these event variables; α denotes the events (or
event-expressions) that label a transition leading to the state
and ω the denotes the events that label a transition leaving the
state.

ϕc(x, α, ω) =̂ Sc := x ∧ (©stable (Sc)) ∧ more ∧

(
∨
v∈α

v) ∧ keep (¬
∨
v∈ω

v) ∧ fin (
∨
v∈ω

v)

The transition from one state to another is not instantaneous,
but takes exactly a unit interval. The variable Sc, indicating the
state is maintained throughout the whole interval. A state is at
least a unit-interval in length. In the beginning of the interval
describing the state, one of the event variables in α, that label
the transitions leading to this state, is true. Throughout the
interval none of the events that label transitions leaving the
state is true, only in the final state at least one of them is true.

This obviously does not represent a full formalisation of
Statecharts in ITL, however it is simple and expressive enough
to discuss the concurrency of mechanisms enforcing usage
control policies.

III. USAGE CONTROL

Usage control (UCON) [1] has been described as a new
paradigm for access-control, that extends conventional access
checks with ongoing control and management functionality.
In UCON an access is not seen as an atomic access request,
but as a usage process, viz. a longstanding interaction with a
system resource.

A. Usage Processes

A usage process describes a partial behaviour of the system
when an authenticated user is accessing a system resource. A
usage process can be in various states as depicted in Fig. 4.

denypermit

revokeend

done

allowed denied

ready

requesting

try

idle

post−updatepost−update
revoked

post−updatepre−update

on−update
accessing

reset

4: Single Usage Process

Initially the usage process is in the idle state. The user will
at some point try to access the resource and change the state to
requesting. Now the UCON monitor will decide, based on the
policy, whether to permit or deny the access, changing the state
to either allowed or denied, respectively. In the state denied,
the UCON monitor will perform postupdate actions as defined
by the policy and on completion reset the state of the usage
process to idle. In the state allowed the UCON monitor will
perform preupdate actions that are specified in the policy for
this request and on completion transit into the state accessing
that represents the actual interaction between the user and the
resource. During the access, the UCON monitor will perform
onupdate actions at certain points during the execution. The
access is then either ended by the user or revoked by the
UCON monitor if a revocation condition specified in the policy
has been met. In the state done the request has been executed
successfully. The state revoked indicates the failure, due to
policy violation. In either case the postupdate actions specified
in the policy are executed by the UCON monitor and the usage
process is reset to its idle state.

This is a variation of the UCON model originally described
in [4]. The difference is that pre-update actions are executed
in the allowed state rather than in the requesting state, viz.
they cannot affect the access-control decision. For this purpose
the state allowed has been introduced. Another difference is
that post-update actions are executed at the end of a request,

irrespective of whether it was denied or revoked by the
controller or ended by the user. As we are interested in the
concurrency of usage processes, we take the view that the
same usage process can be performed several times and reset
it after every request in its idle state.

B. User, Control and System Separation

The depiction of a usage process in Fig. 4 explains the
behaviour of the system from the viewpoint of a single user
request, however it lacks structure. It does not distinguish
clearly between the user, the controller enforcing the policy,
and the system that provides the actual functionality requested
by the user. This structure is important if we consider the
enforcement of usage control in a real system. Fig. 5 models
usage control as a reactive system in form of a Statechart.
Here the usage process, its controller and the system itself
are modelled as orthogonal components that are synchronised
using broadcast events. The user will initiate a usage process
p by generating the try event. In the requesting state all
required activities for the usage process to start are executed
and the request event is generated. Upon the request event the
controller for the usage process p will enter the state pre-check
and determine the access control decision based on the policy.
If the access is denied it will perform the post-update activities
in the state post and indicate the resetting of the usage process
by generating the event reset. If the access was permitted
the pre-update activities are performed in the state pre and
upon completion the event ready is generated to indicate that
the access can commence. All three components synchronise
on this event, viz. the states accessing, on and executing are
entered simultaneously. In the on state the controller performs
on-update activities as defined by the policy and can also raise
the event revoke that terminates the access. Refinements of the
states accessing and executing describe the interaction between
user and system during the access. The event end indicates the
termination of the usage by the user.

The usage and control components are parametrised with p,
denoting a concrete usage process. A usage process represents
a subject performing and action on a resource. All usage
processes are independent from each other. In the model Fig. 5
also the controllers are independent from each other.

Whilst it is desirable to have independent controllers, as this
increases the concurrency of the policy enforcement, we will
show in the following that policies introduce dependencies
between controllers that require their synchronisation. When
policies define mutable attributes and their updates, then these
attributes are shared between the various controllers of usage
processes. This shared state allows for side-effects to take
place across usage processes. A simple example is the Chinese
Wall policy [5] where the use of one resource determines
future access control decisions for other accesses. A Chinese
Wall between a set of usage processes or Separation of Duty
requirements would be achieved through updating a shared
state and making access and revocation conditions dependent
on this state.

accessing

waiting

idle

requesting

try

/request

revokeend

reset

ready

idle

executing

idle

on−check

ready

revoke

end

SystemController
p

Usage
p

/reset

permit

request

deny
pre−check

/ready

on

pre

pre−update

allowed

post

denied

revoked

revoke end

done

post−update

on−updt
on−
update

5: User, Controller and System

The existence of a shared state requires the synchronisation
of the various controllers, to avoid concurrent write situations.
However it is inherently inefficient to have all controllers
operating interleaved to ensure that no conflicts occur. Instead
it is much more sensible to analyse the policy for such
dependencies and constrain the behaviour of the controllers
such that conflicts are avoided. In the following we show
how controller for stateless UCON policies (preA0) can be
designed, we then extend this to include UCON policies that
perform pre-updates of mutable attributes (preA1). We show
how simple exclusion requirements can be problematic if the
controllers do not take care of the dependencies between usage
processes.

IV. ENFORCING UCON POLICIES

Traditional access control considers a single controller that
determines the access decision. In the most basic case all
access decisions are static, e.g. defined in Access Control Lists,
and the controller will not maintain any state (Fig. 6). In this
case no conflicts can arise and all access decisions can be made
independently. However, as soon as the controller is extended
to enforce stateful policies, viz. dynamically updates attributes
as side-effects of access requests (Fig. 7), the possibility for
conflict does arise.

A. Traditional Access Control

Traditional access control corresponds to the UCON preA0

class of policies, viz. an authorisation check is performed
before the request is granted and no mutable attributes are
updated. This class can be enforced by the controller depicted
in Fig. 6. We term here the controller as being the overall
enforcing entity, and refer to a reference monitor (RM) as a
component of the controller that is responsible for a single
usage process p. p stands here for the tuple 〈s, o, a〉, where s
is the subject requesting to perform the action a on resource
o. P denotes the set of all usage processes. The states of
each RMp are: statesRMp =̂ {idlep , checkp}. We define the
behaviour of the controller as follows:

idle

request

deny
pre−check

pre

/ready

Controller

6: Static Controller

ϕidle,p =̂ ϕRMp(idle, {Einitp , Edenyp , Erdyp}, {Ereqp})(1)
ϕcheck ,p =̂ ϕRMp(check , {Ereqp}, {Erdyp,Edenyp}) (2)

ϕRMp =̂ SRMp = idle ∧ (ϕidle,p ; ϕcheck ,p)∗ (3)

ϕcontrol =̂
∧
p∈P

(ϕRMp) (4)

(Eq. 1) defines the behaviour of the controller in the state idlep.
The state can be entered by a transition labelled with the initp ,
denyp or rdyp event and left with transitions that are labelled
with the reqp event. Analogously the state checkp is defined in
(Eq. 2). The behaviour of the RM (Eq. 3) for the usage process
p is then defined as the alternation between the states idlep and
checkp. The overall usage controller is then the conjunction of
the RM for all usage processes p ∈ P . Under the assumption
that the idle and check state do not maintain any attributes for
future access decisions, all access control checks can indeed
executed concurrently (true parallelism) without interference.

An implementation of such an enforcer is e.g. the Java
AccessController class is accessible by all threads running in
the JVM concurrently. Standard Java policies do not maintain
state. Similarly traditional access control lists that are static
and are not changed at run-time fall into this category.

B. Stateful Access Control

The notion of mutable attributes as proposed by Park
et.al. [6] provides far reaching flexibility for access control
specifications. Attributes can change their values as a side-
effect of accesses that are initiated by the user. This means that
the reference monitor is stateful and maintains attributes that
influence future control decisions. Using mutable attributes
for example history-based policies can be expressed, or the

number of users concurrently accessing a resource can be
limited. With respect to UCON the simplest form of using
mutable attributes are policies that are expressed as preA1,
viz. the attribute update is performed before the access takes
place. The controller depicted in Fig. 7

idle

allowed

pre−update

request

pre

pre−check
deny

permit

/ready

Controller

7: Dynamic Controller

performs update action prior to the access and can therefore
enforce this class of policies. The states of the RM are
statesRMp

=̂ {idle, check , allowed}. The behaviour of a
controller is then defined as:

ϕidle,p =̂ ϕRMp(idle, {Einitp , Edenyp , Erdyp}, {Ereqp})(5)
ϕcheck ,p =̂ ϕRMp(check , {Ereqp}, {Epermp,Edenyp}) (6)

ϕallowed,p =̂ ϕRMp(allowed , {Epermp}, {Erdyp}) (7)

ϕRMp =̂ SRMp = idle ∧ (ϕidle,p ; ϕcheck ,p ;
(ϕallowed,p ⊕ (empty ∧ Edenyp)))

∗ (8)

ϕcontrol =̂
∧
p∈P

(ϕRMp) (9)

The state allowed does explicitly perform pre-update actions
to modify the mutable attributes of the policy. These update
actions are part of UCON policies and are defined as a
constraint on the state allowed. For example the increment
of an access counter countp every time an access takes place
can be expressed as:

2a (ϕallowed,p ⊃ (countp ← countp + 1))

Informally this states that every time the reference monitor for
the usage process p is in the state allowed the mutable attribute
countp is incremented. The execution of the allowedp state
implies that the value of countp at the end of the state is one
more than in the beginning of the state allowedp . In this paper
we take the view that an attribute update can be expressed as
the assignment of the a set of attributes to new values. More
complex update activities can be introduced, which however
complicates the model and its analysis. Attributes can be
shared between the reference monitors for the various usage
processes. Dependencies can be imposed by a policy, that
make the parallel enforcement (Eq. 9) unfeasible. We present
an example of such a dependency in the following.

C. Example of Conflicting Attribute Update

Suppose the following requirement:

Users alice or bob can read from file foo, but never
both, viz. after bob accessed the file alice can no
longer read it and vice versa.

To model this requirement we introduce a mutable attribute
foo.readby that stores the identity of the subject that has access
to the file foo. Initially foo.readby is set to unknown. The
requirement is then captured by the pre-update rules:

2a ϕallowed,〈bob,foo,read〉 ⊃ foo.readby← bob

2a ϕallowed,〈alice,foo,read〉 ⊃ foo.readby← alice

The preupdate rules constrain the behaviour of the controller
in the allowed state. The controller must store the identity of
the accessing subject in the attribute foo.readby. It is important
to note that the two reference monitors for alice and bob are
executing concurrently.

Authorisation rules are enforced by constraining the choice
of the permit respectively deny events that are raised by the
controller. We describe the authorisations conditions for both
usage processes as the following invariants:

2(Epermit〈bob,foo,read〉 ⊃ foo.readby = bob ∨

foo.readby = unknown)

2(Epermit〈alice,foo,read〉 ⊃ foo.readby = alice ∨

foo.readby = unknown)

2(Epermitp
⊃ ¬Edenyp

)

2(Edenyp
⊃ ¬Epermitp

)

These rules state that the permit event can only occur
if either no user has read the file foo yet, or the file has
previously been read by the same user. The two reference
monitors process their access control decisions and update
actions concurrently. As the attribute foo.readby is shared
between the two processes a concurrent write can occur. The
effect of this is that the requirement is not enforced by the
controller if the requests are made in very short succession.
Figure 8 depicts this concurrent update.

time

pre−check allowed

pre−check allowed

Control(alice,file,read)

unknownfoo.readby= bob alice

Control(bob,file,read)

pre

pre

8: Concurrent Requests

The access control check for both usage processes succeeds,
as foo.readby has at the time the value unknown. The preup-
date for bob’s usage assigns the value bob that is immediately
overwritten by alice. The effect is that both bob and alice
can read the file foo, and only alice will have access in the
future. If alice’s request was made a little later, she would

have been denied the access, as then the value of foo.readby
would be already bob. This shows that the policy definition
that models the exclusive access of alice and bob introduces a
dependency that must prevent the access control requests to be
processed concurrently. The pre states of the controllers must
be mutually exclusive in order to prevent undesired concurrent
modifications of shared attributes.

V. AVOIDING CONFLICTS BY INTERLEAVING

A relatively straightforward solution for a preA1 controller
is to interleave all access decisions and pre-update actions
of its reference monitors. The overall behaviour of such a
controller can then be expressed as a single process:

ϕcontrol =̂ SRM = idle ∧ (10)
(ϕinit ;⊕
p∈P

(ϕcheck ,p ; (ϕallowed,p ⊕ (empty ∧ Edenyp))))
∗

The operator ⊕ stands here for the logical exclusive-or. The
controller starts in the state idle and upon the event request
enters the state pre of exactly one usage process p. All states
pre, viz. the sequence of check and optionally allowed, are
mutual exclusive.

1) Advantage: The advantage of this enforcement model is
that conflicting concurrent updates are effectively avoided and
that the approach is independent from the enforced policy.
A concrete implementation of such controller, this could be
easily programmed using monitors or binary semaphores. The
implementation is generic and is not dependent on the concrete
policy that is enforced. Most approaches in which the policy
is interpreted will make this or similar design choices.

2) Disadvantage: The drawback is that the interleaving of
all usage processes introduces an unnecessary bottleneck. This
is especially serious when the controller is extended to deal
with ongoing updates of attributes and revocation that are
part of more complex UCON policies (e.g. preA2 or onA∗
models). An interleaving enforcement model also is difficult
to distribute over a network as it requires additional protocols
(e.g. 2-phase commit) to ensure that updates are not made
concurrently. In a distributed enforcement model the attributes
are typically stored in a Policy Information Point (PIP) [7], [8]
and are accessed by the various decision points in the network.
The overhead on communication and synchronisation with the
PIP can be significant.

3) Discussion: The interleaving enforcement model as-
sumes that the decision making in the state check and updates
in the state allowed are sufficiently fast. With respect to the
example the processing of alice’s request would be delayed
until bob’s request has been processed, resulting in a negative
access control decision for alice. This enforcement design
does allow to capture the requirement of exclusive access
between bob and alice. This model is relatively easy to
implement using e.g. monitors to mark the critical sections in
the enforcement code. The approach is adequate for relatively
small systems, or systems where requests are not processed
concurrently anyway. If the underlying system however is

capable of processing a number of requests, the interleaving
controller introduces a bottleneck.

VI. EFFICIENT ENFORCEMENT MECHANISM DESIGN

The degree of concurrency that can be provided by a
controller depends on the type of policy that is enforced. We
have shown in Section IV a controller for stateless policies that
can unconditionally process requests concurrently. That this
is not in general possible for stateful policies is clear from
the example given in Section V. Fortunately it is not only
the type of policy that determines the degree of concurrency
that is possible in the enforcement of a policy, but the rules
themselves.

Suppose that two other users, chris and john, are uncondi-
tionally allowed to read from the file foo. In the case of the
interleaving enforcement all access request would be processed
sequentially, leading to an increased delay. In fact, there is no
need to delay requests by chris and john as they are fully
independent. If the system is operating under a high load, viz.
many requests are made concurrently, the time-span between
the user request and the access decision can be substantially
decreased by controlling the usage processes for chris and john
concurrently. For this extended example the controller would
control four usage processes, representing the access to the
file foo by alice, bob, chris and john. The constraints for the
controller are as follows:
〈alice, foo, read〉 :

2a ϕallowed,〈alice,foo,read〉 ⊃ foo.readby← alice

2(Epermit〈alice,foo,read〉 ⊃ foo.readby = alice ∨

foo.readby = unknown)

〈bob, foo, read〉 :

2a ϕallowed,〈bob,foo,read〉 ⊃ foo.readby← bob

2(Epermit〈bob,foo,read〉 ⊃ foo.readby = bob ∨

foo.readby = unknown)

〈chris, foo, read〉 : true
〈john, foo, read〉 : true

By breaking down the policy into the constraints of the
controller for the individual usage processes, the dependencies
between usage processes can be statically analysed.

A. Identification of Dependencies

In order to determine the dependencies between the usage
processes the mutable attributes that occur in constraints on
the allowed state and the constraints on access decisions
must be compared. This is a simple algorithm that traverses
the potentially conflicting usage processes and determines
whether a conflict can occur or not. Here P is the set of all
usage processes and Var(x,y,z) denotes the mutable attributes
that are used in constraints for state x and usage process y; z
indicates whether access to the variable is read (r) or write (w).

for each p ∈ P :
for each q ∈ P \ {p} :
if Var(pre-check, p, r) ∩ Var(allowed, q, w) 6= ∅ then

Decision depends on update.
Pre-states of p and q are mutually exclusive

endif

if Var(allowed, p, w) ∩ Var(allowed, q, w) 6= ∅ then
Potential for conflicting updates of attributes.
Pre-states of p and q are mutually exclusive

endif

if Var(allowed, p, r) ∩ Var(allowed, q, w) 6= ∅ then
Pre-states of p and q are mutually exclusive

endif

if Var(allowed, p, w) ∩ Var(allowed, q, r) 6= ∅ then
Pre-states of p and q are mutually exclusive

endif

endfor

endfor

If the constraints for the two usage processes share mutable
attributes they are dependent. The first case is that one access
control decision relies on attributes that are updated in the by
another usage process’ pre-update. The second case is that two
processes can try to update the same attributes concurrently.
The last two cases capture that one usage process’ update relies
on values that are updated by another usage process.

Applying this algorithm to our example policy for alice,
bob, chris and john results in the mutual exclusion of the
processes for alice and bob. Only the first and the second case
apply. The result can be visualised as a dependency graph:

JohnAlice Bob Chris

9: Dependency Graph

Nodes represent usage processes. Edges represent depen-
dencies. Neighbouring nodes in the graph are mutually ex-
clusive. Independent sub-graphs, e.g. {alice,bob}, {chris},
{john} can be enforced without any interaction between
the controllers. This is advantageous for the distribution of
controllers, as they can operate without any communication.
Nodes that are connected, but not direct neighbours, can be
processed concurrently, but must remain on the same controller
to guarantee mutual exclusion with other usage processes.

a) Remark: The presented algorithm is based on the
enforcement of UCON policies of type preA1 (See Fig. 7).
Due to space limitations we only outline the extensions
required for the full set of UCON policies (See Fig. 5).
The extension requires more cases, checking for attribute
conflicts, to be added. For preA1 it is sufficient to address
the mutual exclusion of the usage process’ pre states. In the
extension the conflicts must distinguish between the states
pre, on and post and attach these as labels on the edges of
the dependency graph. This results in a graph that shows
which states between two dependent usage processes must
be mutually exclusive. This is important as for the control

of long-standing interactions between users and system any
interleaving of whole usage processes is highly undesirable.

B. Constraining Dependent Controllers

Having identified the dependencies between the controllers
of the usage processes we need to ensure mutual exclusion
of the affected states. Figure 10 shows the four reference
monitors for the preA1 controller of our example. The state
pre is entered on the event request. To ensure mutual exclusion
we have to further constrain this transition. Conditions in
Statecharts are written in brackets preceding the event.

idleidle

allowed

idle

pre

Chrisrequest

idle

pre

Johnrequest

pre

BobAlice

pre

[ca] request [cb] request

pre−check

Chris John

BobAlice

10: Dependency between Controllers

The request transitions for the controllers for Alice and
Bob are additionally constrained by the conditions ca and cb,
respectively:

ca =̂ ¬ requestBob ∧ ¬(SBob = pre − check ∨ SBob = allowed)
cb =̂ ¬ requestAlice ∧ ¬(SAlice = pre − check ∨ SAlice = allowed)

The transition for the usage process of Alice to enter the state
pre is conditional on that the i) usage process of Bob is not
concurrently requesting access and ii) usage process of Bob
not being currently in the state pre (which is either pre-check
or allowed). Similar the condition for Bob’s usage process.
The transitions for Chris and John are unconditional. As a
result the pre states for Alice and Bob are mutually exclusive.
The access checks and pre-updates for Alice and Bob are
interleaved and those for Chris and John are truly concurrent.

VII. RELATED WORK

The UCON model has been initially proposed by Park
and Sandhu in [1]. A formalisation has been presented by
Zhang et.al [4]. In our previous work [9] we provided an
alternative formalisation focusing on implementation issues.
We selected UCON as a suitable abstraction level for the re-
finement of high-level history-based policies [10] into concrete
implementable enforcement code that we presented in [11].

Work on the analysis of policy conflicts has been undertaken
in the past, e.g. Lupu and Sloman [12] focus on the analysis of
conflicts within policies that result of conflicting specification,
e.g. the case that an obligation and a negative authorisation
can be derived simultaneously. Work by Jajodia et.al. [13]

addresses the resolution of conflict by means of decision
rules that decide at run-time whenever conflicts arise in the
policy. Similarly Chomicki and Lobo [14] introduce monitors
for history-based policies based on the PDL framework [15].
Their work is possibly closest related as it addresses the de-
confliction of actions by means of delaying or cancelling
actions. Their work is focused on the run-time aspect of policy
enforcement and does not address the static analysis as a
means to optimise the enforcement efficiency.

Schneider [16] proposed an automata-based approached
to the enforcement of history-based policies. He categorises
properties that are enforceable by execution monitoring. His
work has been later extended by [17] to include the enforce-
ment of obligations. More recently a classification has been
presented by Hamlen et.al. [18]. Schneider also allows for the
conjunction of security automata however does not address the
identification of dependencies from higher-level policies.

VIII. CONCLUSION

We initially presented a model of an enforcement mech-
anism as a reactive system in form of a Statechart. This
model clearly separates between user, controller and system.
We focused on the controller component as UCON policies
can be expressed as constraints on the controller’s behaviour.

We formalised subsets of the controller for the UCON policy
classes preA0 and preA1 and showed that the introduction of
stateful policies, in the case of UCON represented by mutable
attributes, introduce dependencies between the controllers for
usage processes. We motivated the resulting requirement for
the interleaving of usage processes control states and provided
an example of how an update conflict can invalidate the
original requirement.

In Section V we discussed the option of interleaving all
usage processes and found that this constitutes a significant
bottleneck if the system is i) able to concurrently process user
requests and ii) expecting substantial load. For such systems
we proposed to statically analyse the policy before deployment
to identify synchronisation requirements of the controller and
provided a simple algorithm to identify dependencies based on
the attributes that are used in the policy rules. Based on the
identified dependencies we then showed how the enforcement
model can be constrained.

The proposed approach is especially useful for large-scale
distributed environments where many user requests are made
concurrently, and also to increase the decision making time in
the case that the controller is running on increasingly common
multi-processor systems.

We see this work as the basis to further analyse depen-
dencies from policies. For example we did not consider that
update rules are typically conditional, viz. when our algorithm
detects a conflict it may well be that the conditions of the
rules ensure that this conflict cannot occur at run-time. The
application of model-checking to identify these cases on a rule-
by-rule basis is a future strand of investigation. Another aspect
is the distribution of controllers within a distributed system.

Having said that the distribution based on independent sub-
graphs is straight forward, it is of possibly even greater interest
to identify distributions of controllers that minimise communi-
cation overhead, whilst maximising concurrency. This requires
a detailed analysis at attribute level. A third item for our future
work is the integration of the enforcement model with our
previous work on policy specification and refinement.

REFERENCES

[1] J. Park and R. S. Sandhu, “The UCONABC usage control model.” ACM
Trans. Inf. Syst. Secur., vol. 7, no. 1, pp. 128–174, 2004.

[2] D. Harel, “Statecharts: A visual formalism for complex
systems,” Sci. Comput. Program., vol. 8, no. 3, pp. 231–274,
1987. [Online]. Available: http://www.wisdom.weizmann.ac.il/∼dharel/
SCANNED.PAPERS/Statecharts.pdf

[3] A. Cau, B. Moszkowski, and H. Zedan, “The ITL homepage,”
http://www.cse.dmu.ac.uk/STRL/ITL.

[4] X. Zhang, F. Parisi-Presicce, R. S. Sandhu, and J. Park, “Formal model
and policy specification of usage control.” ACM Trans. Inf. Syst. Secur.,
vol. 8, no. 4, pp. 351–387, 2005.

[5] D. Brewer and M. Nash, “The Chinese Wall Policy,” in IEEE Symposium
on Research in Security and Privacy. Oakland, California, USA: IEEE,
May 1989, pp. 206–214.

[6] J. Park, X. Zhang, and R. S. Sandhu, “Attribute Mutability in Usage
Control.” in Proceedings of IFIP TC11/WG 11.3 Eighteenth Annual Con-
ference on Data and Applications Security, C. Farkas and P. Samarati,
Eds. Sitges, Catalonia, Spain: Kluwer, July 2004, pp. 15–29.

[7] ISO/IEC, “ISO/IEC 10181-3:1996 Information technology – Open Sys-
tems Interconnection – Security frameworks for open systems: Access
control framework,” March 2006. [Online]. Available: http://www.iso.
org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18199

[8] OASIS, “eXtensible Access Control Markup Language (XACML)
Version 2.0,” February 2005. [Online]. Available: http://www.oasis-open.
org/committees/tc home.php?wg abbrev=xacml#XACML20

[9] H. Janicke, A. Cau, F. Siewe, and H. Zedan, “A note on the formalisation
of UCON,” in Proceedings of the 11th ACM Symposium on Access
Control Models and Technologies (SACMAT07), June 2007, pp. 163–
168.

[10] H. Janicke, A. Cau, F. Siewe, H. Zedan, and K. Jones, “A Compositional
Event & Time-based Policy Model,” in Proceedings of POLICY2006,
London, Ontario, Canada. London, Ontario Canada: IEEE Computer
Society, June 2006, pp. 173–182.

[11] H. Janicke, A. Cau, F. Siewe, and H. Zedan, “Deriving Enforcement
Mechanisms from Policies,” in Proceedings of the 8th IEEE interna-
tional Workshop on Policies for Distributed Systems (POLICY2007),
June 2007, pp. 161–170.

[12] E. C. Lupu and M. Sloman, “Conflicts in Policy-Based Distributed
Systems Management,” IEEE Trans. Softw. Eng., vol. 25, no. 6, pp.
852–869, 1999.

[13] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, “Flexible
support for multiple access control policies,” ACM Trans. Database
Syst., vol. 26, no. 2, pp. 214–260, 2001.

[14] J. Chomicki and J. Lobo, “Monitors for History-Based Policies,” in
Proceedings of the international Workshop on Policies For Distributed
Systems and Networks, ser. Lecture Notes In Computer Science,
J. L. M. Sloman and E. Lupu, Eds., vol. 1995. Springer-Verlag,
January 2001, pp. 57–72. [Online]. Available: http://www.cse.buffalo.
edu/∼chomicki/papers-policy01.ps

[15] J. Lobo, R. Bhatia, and S. A. Naqvi, “A Policy Description
Language,” in AAAI/IAAI, 1999, pp. 291–298. [Online]. Available:
http://citeseer.ist.psu.edu/lobo99policy.html

[16] F. B. Schneider, “Enforceable Security Policies,” ACM Transactions on
Information and System Security, vol. 3, no. 1, pp. 30–50, February
2000.

[17] C. N. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes, “Enforcing Obli-
gations with Security Monitors,” in The Third International Conference
on Information and Communication Security (ICICS’2001), November
2001.

[18] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Computability
classes for enforcement mechanisms,” ACM Trans. Program. Lang. Syst.,
vol. 28, no. 1, pp. 175–205, 2006.

