
Analysis and Run-time Verification of Dynamic

Security Policies

H. Janicke, F. Siewe, K. Jones, A. Cau and H. Zedan

{heljanic, fsiewe, kij, acau, hzedan}@dmu.ac.uk
Software Technology Research Laboratory,
Gateway House, De Montfort University,

Leicester LE1 9BH

Abstract. Ensuring the confidentiality, integrity and availability of in-
formation is the key issue in the battle for information superiority and
thus is a decisive factor in modern warfare. Security policies and security
mechanisms govern the access to information and other resources. Their
correct specification, i.e. denial of potentially dangerous access and ad-
herence to all established need-to-know requirements, is critical. In this
paper we present a security model that allows to express dynamic access
control policies that can change on time or events. A simple agent sys-
tem, simulating a platoon, is used to show the need and the advantages
of our policy model. The paper finally presents how existing tool-support
can be used for the analysis and verification of policies.

1 Introduction

Fast and reliable access to information is becoming one of the major factors
that decide on the success of a military operation. Modern technologies, such as
airborne sensors and satellite imaging, provide more detailed and accurate data
about the physical domain than ever before. The amount of information helps
to lower uncertainty whilst new technologies to communicate information, help
to develop shared situational awareness.

The sheer load of information also has its drawbacks. Commanders that
need to make decisions quickly might not have the capability to analyse and
comprehend the provided information in time. Decision making processes are
therefore supported by systems that are capable of analysing, filtering, combining
and presenting information that is relevant to the scenario. Such a system can be
seen as a Multi Agent System in which Software Agents represent the information
sources and processors that assist in human decision making [1,2,3].

The agent system that is providing, processing and communicating the in-
formation, together with the information itself, forms the information domain.
It is information that is becoming increasingly important with the rise of Net-
work Centric Warfare, and concerns about its availability, confidentiality and
integrity are predominant factors that decide on the success of military oper-
ations [4]. These security requirements are traditionally expressed in security
policies. Security policies describe properties that the underlying system must

implement to be secure. This is usually ensured by adequate security mecha-
nisms, that enforce the policy on the system. Security policies are an invaluable
asset to any organisation, especially, when they are based on a sound model,
that can be used for the analysis and proof of properties.

Security policies in general deal with all classes of security requirements.
We restrict ourself here to those concerned with access control. Most access
control models that are available today [5,6], are of a relatively static nature
and make it difficult to express access control requirements that are dependent
on time or the occurance of events. These temporal aspects of access control are
becoming more important the more flexible ways of communicating information
become. Especially in the military domain the value of tactical information, and
therefore its protection requirements, will be highly dependent on time (e.g. time
to mission start) and events (e.g. adversary action).

Other work [7,8] has recognised the need for more expressive security policies,
to capture the temporal dimension of access control. Although widely recognised,
these models lack compositionality. By compositionality we mean that the over-
all security policy can be composed out of smaller policies that capture specific
requirements and that can be verified individually. The advantage of the access
control model that is used in our work is that it does not only allow to express
parallel, but also sequential composition, which allows to express changes in the
policy dependent on time and events. The security model has a sound founda-
tion in Interval Temporal Logic which has been successfully used for functional
and temporal system specifications [9] and is now extended to express security
properties [10].

The security model and the tool-support for the analysis is part of SANTA
development framework, that is concerned with the development of secure Multi
Agent Systems. In this framework agents are controlled by security policies, that
express security requirements such as authorisation, delegation and obligation.
SANTA is unifying, i.e. it allows to express functional, temporal and security
requirements within the same formal framework.

Java-based Agent Middleware

Formal Modelling

Computational Model

Security Functional

Specification

Design

Implementation

Temporal

Architecture

SANTA

WSL

Translation

Analysis

Runtime Validation

AnaTempura

Animation

Proofs

Modelchecking

Executable

ITL/PVS

SANTA Compiler

A
b

s
tra

c
tio

n

Lite

SPAT

Analyst

JADE Cougaar

Designer

Fig. 1. The SANTA Framework

Beside the sound model, SANTA comprises linguistic support that allows
the top-down development of Multi Agent Systems together with their secu-
rity requirements. The importance of addressing security in the beginning and
throughout the development has been widely recognised [11], but there is still
a lack of methodology and tool-support. The SANTA framework, depicted in
Fig. 1, tries to rectify this situation and draws the focus on security require-
ments and their interplay with functional and temporal aspects. Starting from
a formal specification, the abstract design of the agent system is written in the
wide-spectrum language SANTA-WSL, that allows to express abstract specifica-
tion (as Interval Temporal Logic formulae) and concrete implementation within
the same language. SANTA-WSL is close to the popular Java programming
language, and contains additional constructs for agent and policy specification.
These additions make it easier for an agent-system developer to implement ap-
plication level security requirements. The SANTA-WSL translator is then used
to translate the SANTA-WSL program into an appropriate agent middle-ware.
Programs in SANTA-WSL will have a formal semantics and can be analysed
using a variety of tools that comprise the SANTA toolkit. This paper will not
discuss the development approach itself, but show how access-control policies
can be composed to cater for dynamic aspects of security requirements.

Dynamic access control policies are more expressive, but also more difficult
to comprehend and analyse. In this paper we will present the prototype of the
Security Policy Analysis Tool (SPAT) using a small case study, that illustrates
some of the temporal aspects of access-control. The tool will be used to animate
the security policy, to show how access control decisions change over time and
by events. It allows the analysis of information flow and can provide information
on which policy rule is responsible for a concrete access control decision.

The rest of the paper is organised as follows. Section 2 provides a short infor-
mal introduction to the underlying logic and the security model. Section 3 then
describes a simplified scenario and shows the formalisation of security require-
ments. Section 4 describes the tool-support for the visualisation and verification
of security policies. The final section then concludes and outlines future work.

2 A Dynamic Security Model

This section will provide an overview of how access control requirements can be
expressed in our model using small motivating examples. Due to space limitations
we do not provide the formal semantics of the model in this paper, but refer the
interested reader to [10]. The security model is based on Interval Temporal Logic
(ITL), which provides the sound foundation that is necessary in the development
of critical systems. We first provide a short informal introduction to ITL, and
go then on to introduce our security policies in a small scenario.

2.1 Interval Temporal Logic

Interval Temporal Logic (ITL) is a flexible notation for both propositional and
first order reasoning about periods of time found in descriptions of hardware and

software systems. It can handle both sequential and parallel composition unlike
most temporal logics [12] since assumption/commitment paradigm and a set of
compositional guidelines [13] are applied in ITL. There is a very powerful and
practical compositional proof system for ITL [12]. That is, much of the proof of
a system specified in ITL can be decomposed into proofs of its parts. It offers
powerful and extensible specification and proof techniques for reasoning about
properties involving safety, liveness and timeliness.

Syntax and Semantics The key notion of ITL is an interval. An interval σ

is considered to be a (in)finite sequence of states σ0, σ1 . . ., where a state σi is
a mapping from the set of variables Var to the set of values V al. The length
|σ| of an interval σ0 . . . σn is equal to n (one less than the number of states in
the interval, i.e., a one state interval has length 0). The syntax of ITL is defined
below.

Expressions

e ::= µ | a | A | g(exp1, . . . , exp
n
) | ıa : f

Formulae

f ::= p(e1, . . . , en) | ¬f | f1 ∧ f2 | ∀v q f | skip | f1 ; f2 | f∗

Where µ is an integer value, a is a static variable (doesn’t change within an
interval), A is a state variable (can change within an interval), v a static or state
variable, g is a function symbol and p is a predicate symbol.

The informal semantics of the most interesting constructs are as follows:

– skip: unit interval (length 1, i.e., an interval of two states).
– f1 ;f2: holds if the interval can be decomposed (“chopped”) into a prefix and

suffix interval, such that f1 holds over the prefix and f2 over the suffix, or
if the interval is infinite and f1 holds for that interval. Note the last state
of the interval over which f1 holds is shared with the interval over which f2

holds. This is illustrated in Figure 2.
– f∗: holds if the interval is decomposable into a finite number of intervals

such that for each of them f holds, or the interval is infinite and can be
decomposed into an infinite number of finite intervals for which f holds.
Figure 2 illustrates the chopstar operator.

f21f f fff

Fig. 2. Chop and Chopstar

Derived constructs Following is a list of some derived constructs which are
useful for the specification of systems:

– finite =̂ ¬(true ; false): finite interval, i.e., any interval of finite length.
– ✸f =̂ finite ; f : sometimes f , i.e., any interval such that f holds over a suffix

of that interval. Example: ✸X 6= 1 =̂ finite ; X 6= 1: Any interval such that
there exists a state in which X is not equal to 1.

– ✷f =̂ ¬✸¬f : always f , i.e., any interval such that f for all suffixes of that
interval. Example: ✷X = 1 =̂ ¬(finite ; X 6= 1): Any interval such that the
value of X is equal to 1 in all states of that interval.

– fin f =̂ ✷(empty ⊃ f): final state, i.e., any interval such that f holds in the
final state of that interval.

2.2 Security Policies

Access control policies are expressed in terms of subjects, objects and actions.
Subjects represent active entities, such as users and processes, that can be au-
thenticated within the system. We denote the set of all subjects by S. The system
state is represented by objects. Objects can only be modified by the execution
of actions on request of authenticated subjects. We denote the set of all objects
by O, the set of all actions by A. The access control policy determines whether
a subject is allowed to perform an action on an object, or not.

In the context of a Multi Agent System, each agent is seen as both, subject
and object. As a subject, it is a uniquely identifiable process that acts on behalf
of another agent or user. As an object, it encapsulates its state. In our case
contains information about the physical domain, such as images, positions or
other tactical information, that requires protection.

Traditionally access control policies are defined in terms of rules that capture
access control requirements [14]. The general form of a rule is:

premise −→ consequence

The premise of a rule determines when the rule fires and the consequence
of the rule determines the outcome of the rule, for example an access control
decision. We follow this approach, but allow the premise of a rule to express a
behaviour rather than a predicate. The intuition is that an authorisation can
be dependent on the history of execution rather than only the currently observ-
able state. This allows to express history dependent authorisations such as the
Chinese Wall Policy [15]. The following example shows such a rule:

∀s ∈ S, o ∈ O, a ∈ A·

✸do(s, o, a) ∧ clientinfo(c, o) ∧

sepconcern(c, c′) ∧ clientinfo(c′, o′)

 7→ autho−(s, o′, a) (1)

Where the predicates have the following meaning:

– do(s, o, a): Subject s performs action a on object o.
– clientinfo(c, o): Object o belongs to client c.
– sepconcern(c, c′): Client c and client c′ are in a separation of concern rela-

tionship.

The rule given in Eq. 1 then states that when a subject has at some point
in time accessed information of a client, the same subject cannot (negative au-
thorisation denoted by autho−) access information about a client that is in a
separation of concern relationship.

The informal semantics of operator 7→ (Followed By), that is used in the
rules is: Whenever f holds for a subinterval, w holds in the last state of that
subinterval. This is depicted in the figure below.

✉ ✉ ✉ ✉ ✉ ✉.

...............

.............

...........

..........

.........
..

...
...
...
.

..
..
..
..
..
.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

f

w

f

w

The right-hand side of a rule in the security model contains either the vari-
able autho, autho+ or autho−. This allows to express hybrid access control
policies, in which both positive authorisation (autho+) and negative authori-
sation (autho−) can be expressed. In case of conflicts, i.e. a subject has both
positive and negative authorisation, a conflict resolution rule (autho) determines
the actual access decision. Eq. 2 shows a conflict resolution rule, stating that a
negative authorisation takes precedence over a positive authorisation.

autho+(S, O, A) ∧ ¬autho−(S, O, A) 7→ autho(S, O, A) (2)

We denote universally quantified variables by uppercase letters. Rules form
the basis of our access control model. A simple policy can be seen as a set of
these rules, where the intuition is that all rules apply simultaneously.

To capture the dynamics of certain security requirements and to allow the
incremental development of security policies, policies can be composed using a
rich set of operators. The following depicts a selection of operators with their
informal semantics.

– [[P ; Q]] =̂ [[P]] ; [[Q]]: Sequential composition of two policies. The system is
first governed by policy P and then by policy Q.

– [[P‖Q]] =̂ [[P]] ∧ [[Q]]: Parallel composition of two policies. The system is
governed by policy P and Q at the same time.

– [[〈w〉P]] =̂ [[[¬w]P]]: The system is governed by policy P unless w holds. The
state formula w can here indicate the happening of an event.

– [[[w]P]] =̂ ([[P]] ∧ ✷w) ∨ ((([[P]] ∧ ✷w) ; skip) ∧ fin ¬w) ∨ (empty ∧ ¬w): The
system is governed by policy P as long as w holds.

✉ ✉ ✉ ✉ ✉ ✉

¬w ¬w ¬w ¬w ¬w w
.

......................................

.....................................

....................................

...................................

..................................
...........

........
........

........
........

...

.....
.....
.....
.....
.....
.....
.....
.

....
....
....
....
....
....
....
....
....
.

...
...
...
...
...
...
...
...
...
...
...
...
..

[[P]]

.

...............

.............

...........

..........

.........
..

...
...
...
.

..
..
..
..
..
.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

skip

〈w〉P

✉ ✉ ✉ ✉ ✉ ✉

w w w w w ¬w
.

......................................

.....................................

....................................

...................................

..................................
...........

........
........

........
........

...

.....
.....
.....
.....
.....
.....
.....
.

....
....
....
....
....
....
....
....
....
.

...
...
...
...
...
...
...
...
...
...
...
...
..

[[P]]

.

...............

.............

...........

..........

.........
..

...
...
...
.

..
..
..
..
..
.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

skip

[w]P

Policy composition can be used for the incremental development of secu-
rity policies. The advantage of this approach is that small policies are easier to
comprehend and verify. The compositional operators can then be used for the

integration of the overall system policy. We presented only a selection of op-
erators that are used in the following case-study. The policy model provides a
wider range of operators, for example to allow the dynamic addition/ deletion
of rules or to select different policies according to the happening of an event or
a time-out, whichever is first.

3 Case Study

We present a small simplified scenario, that shows the use of our dynamic policy
model. We will use this scenario in the subsequent section, to illustrate the
functionality of our analysis toolkit.

Scenario A platoon is navigating an area, where long range communica-
tion is limited due to environmental conditions. The platoon consists of several
small units and a command unit that carries a long distance transmitter. The
communication within the platoon is enabled using short distance radio links.
The quality of service of the long distance transmission is highly dependent on
the environment the platoon is navigating. Dependent on the command units
position there may be significant drops in the communication bandwidth or even
areas where communication is not possible at all. The command unit is used to
analyse and control the mission. It is constantly relaying mission related infor-
mation back to the base and provides a relay service to the other members of
the platoon. The access to the relay service is controlled by a policy with the
following requirements.

1. All members of the platoon are allowed to relay information.
2. If the bandwidth is dropping below 50% then units that have not been

involved in combat action within the last 2 time-units are denied to relay
information.

3. If the bandwidth drops below 20% only the command unit can relay tactical
and strategic information.

4. If the command unit is under attack, the units that are not in its direct prox-
imity are denied to relay messages, regardless of the available bandwidth.

In the following we will formalise the requirements individually as rules and
then show how the rules can be composed to reflect the overall requirement
specification. We formalise the first requirement as in Eq. 3

member(U, platoon) ∧ command(CMD, platoon) 7→ autho
+(U, CMD, relay (3)

Where member represents the membership relation between units and the
platoon, and command the command unit relation. If U is a member of platoon

and CMD is the command unit of the platoon it follows that U is authorised to
relay information via the command unit CMD.

Whilst the first requirement uses only static information, such as the member-
ship, the second requirement includes a temporal aspect. This can be formalised,

as in Eq. 4.

0

B

@

fin (bandwidth() < 50) ∧ member(U, platoon) ∧

¬(finite ; (✸combat(U) ∧ len(2))) ∧

command(CMD, platoon)

1

C

A
7→ autho

−(U, CMD, relay) (4)

If the interval cannot be decomposed into a prefix interval and a suffix inter-
val of length 2, in which sometimes combat(U) holds, and if the bandwidth is
in the last state of the interval below 50% then the unit is explicitly denied to
relay information via the command unit. The informal semantics of this rule is
depicted below.

✉ ✉ ✉ ✉ ✉ ✉.

..............................

.............................

............................

...........................

..........................
........

.......
.......
.......
......

....
....
....
....
....
....
....

...
...
...
...
...
...
...
...
...
..

...
...
...
...
...
...
...
...
...
...

true

.

.....................

....................

...................

...................

..................
.....

.....
.....
.....
....

...
...
...
...
...
...
.

..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
.

len(2)

.

..
..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
.

...
...
...
...
...
...
..

....
....
....
....
...

..........
........

...................

....................

.....................

......................

✸combat(u)

bandwidth() < 50

The formalisation of requirement 3 follows the same lines as requirement 2,
without the temporal aspect.

0

B

@

bandwidth() < 20

∧ member(U, platoon) ∧

command(CMD, platoon)

1

C

A
7→ autho

−(U, CMD, relay) (5)

Requirement 4 finally defines, that if the command unit is under attack, units
that are not in its proximity are denied to relay information, regardless of the
bandwidth requirements stated in requirements 2 and 3.

0

B

@

combat(CMD) ∧

command(CMD, platoon) ∧

¬near(CMD, U)

1

C

A
7→ autho

−(U, CMD, relay) (6)

The rule in Eq. 6 expresses the requirement. Additionally it states that the
rule overrides the requirements 2 and 3. This can be seen as a dynamic change
in the security policy, dependent on the event that the command unit is engaged
in combat.

The whole policy is expressed as a hybrid policy in which denials take
precedence over allowances (Eq. 2). Policy rule 3 holds independently of policy
changes. This means in general all members of the platoon have the authorisation
to relay information. We distinguish now between two cases:

a) The command unit is not engaged in combat.
b) The command unit is engaged in combat.

The policy for case a) consists of rules 4 and 5, stating that access is limited
according to the available bandwidth. It is applied unless the command unit is
engaged in combat. On this event the policy changes (sequential composition,
;) to case b) defined by rule 6, stating that units in the proximity can relay

information. Case b) is applied as long as the command unit is under attack,
and is then followed by case a). The composed policy is given in Eq. 7.

{Eq. 2, Eq. 3}‖(〈combat(CMD)〉{Eq. 4, Eq. 5} ; [combat(CMD)]{Eq. 6})∗ (7)

The advantage of this approach is that access requirements that are depen-
dent on time and events, can be expressed at a higher abstraction level, without
the need to explicitly encode the conditions in the premise of the rule. This
leads to rules and policies that are easier to comprehend. Using policy composi-
tion, the security administrator can then decide on the time and event relations
between different policies.

The case-study demonstrates the use of dynamically changing policies, and
does show how requirements to control access to resources are specified in gen-
eral. The model allows to express more traditional security concepts like multi-
level security and role-based access control, via the introduction of appropriate
predicates. Its compositionality then allows to combine different policies and to
reason about properties of the composition.

The semantic model of the security policies allows the formal analysis of the
security specification and can be used to prove properties about the specification.
In the following we will show how these security policies can be expressed in
Tempura, an executable subset of ITL and present tool-support, that assists in
the analysis of the given security policy.

4 Analysis and Run-time Verification

An important reason of choosing ITL is the availability of an executable subset of
the logic, known as Tempura [16]. A formula is executable if i. it is deterministic,
ii. the length of the corresponding interval is known and iii. the values of the
variables (of the formula) are known throughout the corresponding interval. The
Tempura interpreter takes a Tempura formula and constructs the corresponding
sequence of states, i.e., interval. For more technical details of the interpreter, we
refer the reader to [16] which is available from the ITL home-page [17]. The use of
ITL, together with its subset of Tempura, offers the benefits of traditional proof
methods balanced with the speed and convenience of computer-based testing
through execution and simulation. The entire process can remain in one powerful
logical and compositional framework.

4.1 Expressing Access Control Policies in Tempura

Executable Temporal Logics have been used for the high-level specification of
Multi Agent Systems for a considerable time [18]. Advantages of Tempura are
that both parallel and sequential composition is expressible, and that it can
closely resemble well known programming language constructs. Tempura has
been previously applied to hardware verification and the analysis of time-critical
systems [9].

This allows us to model the behaviour of the agent system at a high level
and shows how the security policy controls the access to system resources. An
access control rule can be expressed in Tempura as follows:

define rule1(AuthoP) = { keep {

forall s < noSubjects :

forall o < noObjects :

(member(s,platoon) and command(o,platoon)) implies AuthoP(s,o,relay)=true

}}.

Where the predicates member, command model the relations-ships as in Eq.3.
The rules can then be combined using parallel and or sequential composition.
The complete policy is shown in the listing below.

define policy(AuthoP, AuthoN, Autho) = {

rule1(AuthoP) and denialtakesprecedence(AuthoP, AuthoN, Autho) and

((halt(combat(cmd)) and rule3(AuthoN) and rule4(AuthoN)) ;

(halt(not combat(cmd)) and rule5(AuthoN)))

}.

The Tempura program representing the system simulation and the policy
description is then executed by the Tempura interpreter. The code emits infor-
mation about current access-control decision in each step of the execution to the
graphical analysis tool.

4.2 SPAT

The Security Policy Analysis Tool (SPAT) is used to analyse the behaviour of
dynamically changing policies. The graphical front-end can display the access
control matrix for all states in the simulation, and it provides interactive filter-
ing mechanisms that make it easier to obtain the required information. Access
control information can be displayed in form of an access control matrix, in form
of access control lists, or capabilities. The tool also supports the visualisation
of delegation and access control decisions, which are not demonstrated in the
presented scenario.

Especially interesting is the analysis of permissible information flow. By per-
missible information flow we mean such flows that are allowed by the access

control policy. This is a valuable aid in debugging the policy, because a) un-
wanted information flows can easily be detected and b) restrictions in the policy
that violate any need-to-know requirements can easily be seen. The figure above
depicts the permissible information flow in state 6 of the simulation.

The prototype, that is currently under development, can provide an expla-
nation which rules caused an authorisation or denial. This allows to trace back
the rule that lead to an unwanted authorisation and helps in the design of secu-
rity policies, that match the informal requirement. The figure below depicts the
scenario simulation and shows an example explanation.

The access control matrix (left picture), together with the explanation com-
ponent and the graphical visualisation are generic components, that can be used
for the analysis of arbitrary security policies. The scenario representation (right
picture) is dependent on the scenario itself, but SPAT provides mechanisms for
the development of such components and their integration.

5 Conclusion and Future Work

We illustrated the need for dynamically changing security policies using a small
military scenario. We presented the security model that underlies the SANTA
framework and showed how security policies can be incrementally developed.
Unlike most other models, our model allows capturing temporal aspects in both,
the premise of authorisation rules and through policy composition. The Security
Policy Analysis Tool can then be used to animate and visualise the developed
policies, to ensure that the formalisation captured the initial requirements. The
tool is especially useful for the analysis of permissible information flow. It allows
to write the access control policy tight enough to prohibit malicious behaviour
and still ensure that all need to know requirements are fullfilled.

Future work will concentrate on the enhancement of the tool support for
both the analysis and the linguistic support. In the analysis part we enhance
the tracability of access control decisions and increase functionality to filter
the visualised information. We also plan to enhance the Tempura interpreter,
to allow the animation of a wider class of security policies together with the
agent system specification. In the linguistic part we develop the wide-spectrum
language SANTA-WSL in which both security and functional aspect can be
expressed in a uniform, accessible language at all levels of abstraction.

References

1. Thomas E. Potok, A.S.L., Phillips, L., Pollock, R.: Suitability of agent technology
or military command and control in the future combat system environment. In:
Proceeding 8th ICCRTS, National Defence University. (2003) 1

2. F.T. Sheldon, T.P., Kavi, K.: Multi-agent system case studies in command and
control, information fusion and data management. In: Journal of Informatica.
Volume 28., Solvene Society Informatica (2004) pp 78–89 1

3. Bharadwaj, R.: Secure middleware for situation-aware naval c2 and combat sys-
tems. In: In Proceedings 9th International Workshop on Future Trends of Dis-
tributed Comput ing Systems (FTDCS 2003). (2003) 1

4. Alberts, D.S.: Understanding information age warfare. CCRP publication series,
DoD, US (2001) 1

5. Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A unified framework for
enforcing multiple access control policies. ACM transaction on Database Systems
26 (2001) 214–260 1

6. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in
distributed systems. ACM Transactions on Programming Languages and Systems
15 (1993) 1–29 1

7. Steve Barker, P.J.S.: Flexible access control specification with constraint logic
programming. ACM Transactions on Information and System Security 6 (2003) 1

8. Bertino, E., Bonatti, P.A., Ferrari, E.: Trbac: A temporal role-based access control
model. ACM Trans. Inf. Syst. Secur. 4 (2001) 191–233 1

9. A. Cau, C. Czarnecki, H.Z.: Designing a provably correct robot control system
using a lean formal method. In: Proceedings of FTRTFT’98, LNCS 1486. (1998)
pp 123–132 1, 4.1

10. Siewe, F., Cau, A., Zedan, H.: A compositional framework for access control policies
enforcement. In: Proceedings of the ACM workshop on Formal Methods in Security
Engineering: From Specifications to Code. (2003) 1, 2

11. Eckert, C.: Matching security to application needs. In: IFIP TC11 11TH INTER-
NATIONAL CONFERENCE ON INFORMATION SECURITY. (1995) 237 –254
1

12. Moszkowski, B.: Some very compositional temporal properties. In Olderog, E.R.,
ed.: Programming Concepts, Methods and Calculi. Volume A-56 of IFIP Transac-
tions., IFIP, Elsevier Science B.V. (North–Holland) (1994) 307–326 2.1

13. Zedan, H., Cau, A., Zhou, S.: A calculus for evolution. In: Proc. of The Fifth In-
ternational Conference on Computer Science and Informatics (CS&I’2000). (2000)
2.1

14. Woo, T.Y.C., Lam, S.S.: Authorization in distributed systems: A formal approach.
In: Proceedings of the 13th IEEE Symposium on Research in security and Privacy,
Oakland, California, May 4-6 (1992) 33–50 2.2

15. Brewer, D., Nash, M.: The chinese wall policy. In: IEEE Symposium on Research
in Security and Privacy. (1989) 206–214 2.2

16. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University
Press, England (1986) 4

17. Cau, A., Moszkowski, B., Zedan, H.: The ITL homepage.
http://www.cse.dmu.ac.uk/ cau/itlhomepage/index.html (2002) 4

18. Fisher, M.: A survey of concurrent METATEM – the language and its applica-
tions. In Gabbay, D.M., Ohlbach, H.J., eds.: Temporal Logic - Proceedings of the
First Intemational Conference (LNAI Volume 827), Springer-Verlag: Heidelberg,
Germany (1994) 480–505 4.1

