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Abstract

A formal design notation is presented whose underlying agatpnal model is object-
based. The object structure of the model is based on theigatadhdustry-strength Ob-
ject Oriented structured development techniqgue HRT-HODI® computational model
has been specifically chosen because it leads to designs wéiicbe analyzed for their
schedulability in a distributed hard real-time executiomi®nment. It is a wide-spectrum
language supporting abstract description statementgénval Temporal Logic (ITL) for
the description of the timing, functional, and communisatbehavior of the proposed real-
time system, and concrete Temporal Agent Model (TAM) stateis with objects which
can be directly executed. The semantics of these concrairstnts is defined denota-
tionally in specification-orientedstyle using ITL. A system specified at a high level of
abstraction can be systematically transformed into anwabte program by the use of
sound ITL refinement rules.

Key words: object-based, wide-spectrum language, refinement calciémporal Agent
Model, HRT-HOOD, Interval Temporal Logic

1 Introduction

Real-time systems are hard to model as their correctness depends gfingatist
only functionalrequirements, as in most information processing systems, but also
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on non-functionarequirements, such as timing, limited resources and dependabil-
ity.

Traditional real-time system development has been a somewhat ad-hocAaffair.
system is designed from an informal requirement specification as a number of
tasks with associated deadlines, execution periods, and resource requs.erhe
worst-case execution time is calculated for those tasks, and a resdloczion

and schedule is computed which guarantees deadlines. Worst-case execwjon tim
allocation, and scheduling are all complex procedures and research istst#l a

in these areas; in the two latter cases the problems are known to be Nffetam
Correctnessf systems developed in this way can only be performed by testing
and detailed code inspection. However, when the consequence of system failure is
catastrophic such as loss of life and/or damage to the environment, testing and code
inspection can not alone be relied upon.

Therefore, there is clearly scope formalizingsome of the development process,
particularly in the area of requirements specification and design. For this gurpos
a large number of formalisms have been developed, such as RTTL [35], MTL [22],
XCTL [19], ITL [34], TAM [41,40,39,26], TCSP [38], TCCS [44], TACP [7], time
Petri Nets [30,37].

However, we have shown [14] that there are a significant number of limitatitbins w
existing real-time development formalisms. Most important of these isatttedf
methodor guidance on how to use a formalism for both specification writing and
proving correctness. In addition, it is not clear how such formalisms can cope i
the development of large scale real-time systems.

In real-time systems development we would benefit from a method whichsassist
in the derivation of concrete designs from informal requirements specifications
through a ‘temporal’ refinement notion.

A number of refinement calculi already exist for real-time systems, butateegi-
ther incomplete or use an unrealistic computational mdléMe[20] is a real-time
design language which consists of a CSP-like syntax with extensions formeal-ti
However, the formalism is based on the maximal-parallelism hypothesisttie
assumption that there are always sufficient resources available) which re-
strictive for most real time systems. In addition, sifRl€™e does not provide a
separate specification statement as a syntactic entity, the refineenains purely
in the concrete domain. Similarly, RT-ASLAN [1] is a refinement calculinsciv
refines a specification into concrete code, but this again relies on the nigama
allelism model. The Duration Calculus [46] (and to some extend timed Z icemte
attempt), on the other hand, is a formalism based on ITL [34] and provides rules
which are only applicable at the logical level of development.

Furthermore, with the advent of the Object-Oriented (OO) method, as a pdwerf
approach in modeling and developing large-scale and complex software systems,



the quest for sound framework within which such a paradigm can be used has in-
creased. This has mainly been based on extending existing process-oriented for-
malisms:

modetbased: Z++ [23] and VDM++ [24];

algebraicbased: HOSA [18,27] and Maude [32,31];

Petri net CLOWN [6,4,5], CO [2,3] and COOPN/2 [8,9] and
logic-based: TRIO+ [33] and OO-LTL [11]

Although the use of formal methods in the development of real-time systems have
their benefits, turning them into a sound engineering practice has proved to be ex-
tremely difficult. Some “pure” formal methods may keep practically-ogdrgoft-

ware engineers from employing their benefits. This has led to investigdteng t
integration of formal methods with well established structured techniquelshyse
industry (e.g., System Analysis and Design Methodology (SSADM) [29], Your-
don [45] and Jackson [21], for non-real-time systems, and ROOM [13] and HRT-
HOOD [10] for real-time applications). As a result, in [28,42], both SSADM and
Yourdon were integrated with the formal notation Z respectively. An gitémin-
corporate Data flow diagrams into the formal specification notation VDM was done
in [17,36]. Recently, Liu, et al [25], provided a method that integrates both formal
techniques, structured methodologies and the Object-Oriented paradigm. Howeve
they still lack mechanisms for the systematic development of concrete dasign/
from formal specification. This has provisionally been addressed in [15].

The main objective of this work is to provide a wide-spectrum language in which
concrete and abstract constructs can be freely intermixed. This languagetf@am
basis of a formal development technique for the systematic derivation of a ancret
design from an abstract specification using sound refinement rules. The underlying
computational model of this development technique must be realistic and should
support the development of large-scale systems. By realistic we take théhae

it must reflect the basic developer’s intuition about the target applicati@neare

that the resulting system can be analyzed for schedulability. In addition, to suppor
large-scale system development, the computational model should adopt features
advocated in the OO paradigm.

In Sect. 2 we present the syntax of Interval Temporal Logic (ITL) which isluse
for the description of the abstract constructs. In Sect. 3 we present the T@mpor
Agent Model (TAM) concrete constructs plus their semantics in ITL. In Seate
introduce the object model, based on that found in the industry strength structured
technique known as HRT-HOOD, and give the syntax (an extension to TAM) and
semantics (in ITL) of objects. In Sect. 5 we give a small case studjutstrate

the use of this language. In Sect. 6 we end with a discussion on our development
technique.



Table 1
Syntax of ITL

Expressions

ex= uplalAlge,...e) | @f

Formulas

fu= p(el,,eh)|ﬂf |f1/\f2|VV°f |Sk|p|f1,f2|f*

2 Interval temporal Logic

We base our work on Interval Temporal Logic (ITL) and its programming language
subset Tempura[34]. ITL will be used both as our abstract specification language
and to define the specification-oriented semantics of the concrete statements

Our selection of ITL is based on a number of points. It is a flexible notation for both
propositional and first-order reasoning about periods of time. Unlike most temporal
logics, ITL can handle both sequential and parallel composition and offers powerf
and extensible specification and proof techniques for reasoning about properties in-
volving safety, liveness and projected time. Timing constraints are ssipte and
furthermore most imperative programming constructs can be viewed as foimulas

a slightly modified version of ITL [12]. Tempura provides an executable fraonew

for developing and experimenting with suitable ITL specifications.

2.1 Syntax

An interval is considered to be a (in)finite sequence of states, whereeaistat
mapping from variables to their values. The length of an interval is equal to one
less than the number of states in the interval (i.e., a one state intervaiiugis 0).

The syntax of ITL is defined in Table 1 whereis an integer valuea is a static
variable (doesn’t change within an interva)is a state variable (can change within
an interval),v a static or state variablg, is a function symbolp is a predicate
symbol.

The informal semantics of the most interesting constructs are as follows:

e ca:f: the value ofa such thaft holds.

e Skip unit interval (length 1).

e fi; fo: holds if the interval can be decomposed (“chopped”) into a prefix and
suffix interval, such that; holds over the prefix anf} over the suffix, or if the
interval is infinite and; holds for that interval.

e f*: holds if the interval is decomposable into a finite number of intervals such



that for each of thenmh holds, or the interval is infinite and can be decomposed
into an infinite number of finite intervals for whidhholds.

These constructs enables us to define programming constructs like assignment, if
then else, while loop etc. In table 2 some frequently used abbreviationstac i

Table 2
Frequently used abbreviations

true = 0=0 true value

false =  —true false value

fi v iy = =(=fp A fy) or

fi D fy = Sfivfy implies

fi="f = (ff Df)A(f2 D) equivalent

Jv.f = aVvef exists

Of = Skip; f next

more = Otrue non-empty interval
empty = -more empty interval

inf = true; false infinite interval
finite =  inf finite interval

Of = finite; f sometimes

Of = 0Af always

&f = finite; f; true some subinterval
af =  (e-f) all subintervals

fo = empty 0-chopstar

frl = f;fn (n+1)-chopstar

if fo thenfy elsef; = (fo A fy) v (=fg A f2) if then else

fin f = O(empty D f) final state

keep f = @(SkipD f) all unit subintervals
Oe = waOe=a) next value

fine = afin(e=a) end value

A=e = OA=e assignment

€ +— & = finitea (fing) =& temporal assignm.
e getsg = keeple + &) gets

stable e =  egetse stability

intlen(e) = dl-(I=0)a(lgetsl+1)rl <€) interval lengthe
len = aintlen(a) interval length

2.2 Data Representation in ITL

Introducing type system into specification languages has its advantages and dis-
advantages. An untyped set theory is simple and is more flexible than any simple



typed formalism. Polymorphism, overloading and subtyping can make a type sys-
tem more powerful but at the cost of increased complexity. While types sttee |
purpose in hand proofs, they do help with mechanized proofs.

There are two basic inbuilt types in ITL (which can be given pure set-theoret
definitions). These are integef$ (together with standard relations of inequality
and quality) and Booleartr(ge andfalse. In addition, the executable subset of ITL

(Tempura) has basic types: integer, character, Boolean, list and arrays.

Further types can be built from these by means @nd the power set operat@?,
(in a similar fashion as adopted in the specification language Z).

For example, the following introduces a variaklef typeT
(Ix:T) - f =3x- typeT)A f

HeretypgT) denotes a formula describing the desired type. For exartype,T)
could bed < x < 7and so on. Although this might seem to be rather inexpressive
type system, richer type can be added following that of Spivey [43].

3 Temporal Agent Model

The Temporal Agent Model (TAM) [41,40,39,26] was developed to be a realistic
formal software development method for real-time systems. The methoddd bas
on refinement calculus and consists of a logic, a wide-spectrum language and a
refinement calculus.

3.1 Computational Model

A real-time system in TAM is taken to be a finite collection of possibly eonc
rently executing computation agents which communicate asynchronously via time-
stamped shared data areas called shunts. Shunts are passive sharedspacasry
that contain two values: the first gives the time at which the most recdtet twok
place, and the second gives the value that was most recently written. Sybtam
selves can be viewed as single agents and composed into larger systems.

At any time, a system can be thought of having a unique state, defined by the values
in the shunts and local variables. An agent is described by a set of computations,
which may transform a local data space and may read and write shunts during
execution. The computation may be nondeterministic. In particular:



Time is global, i.e., a single clock is available to every agent and shunt. ke ti
domain is discrete, linear, and model-led naturally by the natural numbers.

¢ No state change may be instantaneous.

e An agent may start execution either as a result of a write event on a sigifit,

or as the result of some condition on the current time: these two conditions model
sporadic and periodic tasks respectively.

An agent may have deadlines on computations and communication. Deadlines
are considered to be hard, i.e., there is no concept of deadline priority, and all
deadlines must me met by the run-time system. We are currently invesggati
the inclusion of prioritized deadlines into the language.

A data space is created when an agent starts execution, with nondetecminist
initial values; the data space is destroyed when the agent terminategeND a
may read or write another agent’s local data space.

A system has a static configuration, i.e., the shunt connection topology remains
fixed throughout the lifetime of the system.

An agent’s output shunts are owned by that agent, i.e., no other agent may write
to those shunts, although many other agents may read them.

Shunt writing is destructive, but shunt reading is not.

3.2 TAM Syntax

Agents in TAM are described as follows.

A:z=w:® | Skip| At | x:=e | x<s|e=s| A4 A |
varx: Tin A | shunts: Tin A | [t] A | ift Dig githenA; fi |
AN A | A A | Al A" | loopfor nperiodt A.

wherew is a set of computation variables and shumtsis a predicate in ITL,

which we define below is a time;x is a variable of typd'; eis an expression on
variablessis a shunt of typdimex T; | is some finite indexing segj; is a boolean

expression; and is a natural number.

Informally:

e W: @ is a specification statement. It specifies that only the variables iinairee

w may be changed, and the execution must safisf® is a formula expressed
inITL.

e The agenSkipis a delay of 1.

e The agentAt terminates aftertime units.

e X:= eevaluates the expressienusing the values found in variables at the start
time of the agent, and assigns itddl he expressioamay not include the values
held in shunts: it may only use the values held in variables.



e X < sperforms an input from shust storing the value ix; the type ofx must
be a time—value pair.

e e=- swrites the current value of expressieno shunts, time-stamping it with
the time of the write.

o A; A’ performs a sequential composition.dfand.A’.

e var xX: T in A definesx to be a new local variable of type within A4; its initial
value is chosen nondeterministically.

e shunt s: T in A definessto be a new local shunt of typBmex T within A; its
initial value is chosen nondeterministically, but it is time-stampéetth ie time
of its declaration.

e [t] A gives agentd a duration of: if the agent terminates befoteseconds have
elapsed, then the agent should idle to fill this interval; if the agent does not ter-
minate withint seconds, then it is considered to have failed.

e ifi Oigl gi thenA; fi evaluates all the boolean guargs and executes as;
corresponding to a true guard; if all the guards evaluate to false, then the agent
terminates correctly. The evaluation of the guards should take prectitetg
units; if necessary, the agent should idle to fill this interval. We shall somee
omit the parameter if we do not want to specify it. We shall sometimes write
this construct a#; g; then.4; O g» then A4, O ... O g, then A, fi.

e A A’ forms a nondeterministic choice betwedrand A'.

e A7 A" monitors shunsfor t time units: if a write occurs within this time, then
it executesA’; otherwise it times-out and executds

e A | A" executes the two agents concurrently, terminating when both agents ter-
minate.

e loopfor nperiodt A executesd ntimes, giving each a duration of

We note here that no agent may share its local state space with concurrently ex
cuting agents, and only one concurrent agent may write to any given shunt: these
restrictions allow the development of a compositional semantics and refinement
calculus.

3.3 TAM Semantics

The semantics of TAM is given denotationally in terms of an ITL formula. We
begin by first introducing some extensions to ITL in order to describe the formal
semantics of TAM.

Let W be a set of state variables theameW) denotes that only the variables in
W can possible change, i.e., the variables outside the frame don’t change.

Here, we adopt a combined state-communication model for the system behavior
where the observables correspond to the following variables:

e The normal state variables of ITL.



e variabless representing shunts whose values are tufiles wheret is a stamp
andv the value written. The stamp valuesokill be denoted by/sand the value
stored ins will be denoted byead (S).

The domain of the variablémeis a linear orde(TIME, <,+,0), where 0 is the
least element, and + is an addition operator.

The ITL semantics of TAM is given as follows

W:f = frame (W) A f

Skip = Skip

At =len=t

X:=e =Ox=e

X<S = X =+/SA X2 =read(9)

X=5 = Os= (y/s+1,x)

A; A = A; A

varxin A = Jxe A

shunt sin A = Jse./s=0rA

t]A = At (A; true) A (A D len<=t)
ift Dic1Gi thenA; fi = Vig ([t] (G A A)) v [t] (Aiet —91)
A A =Av A

A A = (At A stable(s)); A v (At —stable(s)); A’
Al A = AnA

loopfor nperiodt A = ([t] A)"

3.4 Procedures

We can trivially introduce various structures within TAM sucH@sctionandpro-
cedure We show this by introducing procedures.

Let Abe a TAM agent and;, xs, ...,Xn be a set of state variables which are free in
A. A procedureP is denoted by

A

[

P(X1,X2, ..., Xn)

The semantics of which is given by

P(yi,Y¥2,....¥n) = A(Y1/X1,¥2/%2, ..., ¥n/*n)



4 Object model

In this section we introduce the object structure which we use in our framework.
Such structure is being used in an industry-strength structured methodology known
as HRT-HOOD [10].

4.1 Computation

A real-time system is viewed as a collection of concurrent activitiehviare
initiated either periodically or sporadically with services which canrdmpiested

by the execution of the activities. The operations of the activities and sendse
threadsand methodsare allocated to the correspondiabjects(an encapsulated
operation environment for the thread or methods) according to their functional and
temporal requirements and the relationships between them. Like HRT-H®@D,
types of objects are defined:

(1) sporadic object — defines a unique thread which activates an operation spo-
radically by response to external events. The thread can not be requested and
executed by other methods’ invocations, however, it can invoke methods pro-
vided by other objects. The thread may be concurrent with other activities in
the system. A minimum interval can be specified to restrain responses+o c
tinuous event occurrences. Sporadic objects are used to model entities in a
system which are involved in random activities.

(2) cyclic object — is similar to a sporadic object except that its thread specifies
an operation which is executed periodically. A cyclic object defines a period
to specify how often the operation is and it is fixed. Every execution of the
operation must be terminated within this period. Cyclic objects are used to
model entities in a system which are involved in periodic activities.

(3) protected object — defines services which can be invoked. The services are
implemented bynethodshich can be requested by others for execution. The
methods can be requested arbitrarily, but their executions must be mutually
exclusive. The execution order of invocations depends on their times of re-
guest. A method in a protected object can only request the methods which
are (in)directly implemented by passive objects. Protected objectsackto
model shared critical resources accessed by different objects or methods.

(4) passive object — is similar to a protected object except there are no con-
straints on invocations of its methods. A method in a passive object can be
arbitrarily requested and immediately executed as a part of its lieemever
being requested. A method in a passive object can only request the methods
which are (in)directly implemented by other passive objects. Passivetsbje
are used to define non-interfering operations on resources.

10



(5) active object — defines a framework for a number @flated objects which
are referred to as itshild objects An active object can be viewed as an inde-
pendent system or subsystem. It encapsulates the methods of its child objects.
Any object outside an active object can not request the methods defined in
its child objects directly but through a method defined by it. The signature
of a method defined in an active object must be consistent with that of its
counterpart except its name. An active object can not include itself as a child
object directly or indirectly and an object can not be a child object of different
objects.

Threads activate and terminate with the corresponding objects and are cahcurre
with each other. Methods are activated by invocations and their executeynben
either concurrent or sequential. Invocations of methods can be either asynchronous
or synchronous. Recursive invocations between methods are prohibited, neither di-
rectly nor indirectly.

4.2 Syntactic Structure

An object consists of a declaration and method(s) in a structure. The dexiarat
presents the definitions of attributes and/or an execution environment for methods
defined in the object. The attributes of an object include:

object type— indicates the object is eithactive, sporadic, cyclic, protecteut
passive

provided methods— signatures of the methods provided by the object for other
objects. We usérovidedMethods(0) to denote the provided method set of an
objecto whereo is sometimes dropped if no confusion is caused. The signa-
tures must be accordant with their definitions. They are declared in the form of
m(in, out), wheremis a method name which is free in the objentandout are

sets which present parameters transfered betweand its clientscard(in) > 0
andcard(out) > 0 (wherecard denotes cardinality of the set). We uisém) and
out(m) to denote them.

used methods- declare the methods invoked by the object and the objects which
provide the methods. We usisedMethods(0) to denote the used method set of
an objecto whereo is sometimes dropped if no confusion is caused. The ele-
ments of the safisedMethods(0) take the form of o', n), wheren' is a method

to be invoked by and is defined i'. UsedMethods(0) definesuserelationships
betweeno and objects inJsedMethods(0). Such relationships specify control
flows between objects and together wiitfim) and out(m), data flows are also
specified.

Other attributes vary with the type of objects:

the activation interval of the thread for a cyclic object.

11



¢ the minimum activation interval of the thread for a sporadic object.

e the child object set for an active object. We @&@ldObjects(0) to denote the
child object set ob if o is an active objeciChildObjects(0) specifies arinclude
relationship between and its child objects based on which the decomposition
process is achieved.

The environment of a non-active object is a set of data over which the methods of
the object execute for computations and communications. The data include con-
stants, variables and shunts. For cyclic and sporadic objects, an actipatiod

and a minimum activation interval are specified in the environment déiclana-
spectively. We us®bjEnv(0) to denote the environment set of an object

A method consists of a head and a body. The head specifies a method name and
a local environment (if necessary) of the method. The body specifies operations

over either the object environment or the method environment, or both. We use

Methods(0) to denote the set of method defined by the object The opera-

tions are described by means of agents which may be either abstract or concrete.
A method can define its local execution environment. WeMits&nv(m) to denote

the local environment of the method A methodmis defined in the form of

m([in, out)) = MthEnv(m) A end

where A (a TAM agent) is the body of methad, in andoutare its input and output
parameter list. We usd, to denote the body of a method

The syntax of an object is as follows.

Method

m = (Method namgin,out| : A end

Object

0 ::= cyclic (Object namgthread on P do A end |

sporadict (Object namethread on Evdo A end |
protected (Object nameProvidedMethods (my,...,m,) end |
passive (Object namgProvidedMethods (my,...,my) end |

active (Object namg ProvidedMethods (0, ...,02) end

whereA is a TAM agentProvidedMethods is a set of provided methodB,andT
are times, anétvis a shunt.

2 Obviously,ProvidedMethods (0) C Methods(0)

12



An active object defines a system or subsystem which consists of a number of
related objects as its child objects, optionally with a number of methods wiech a
implemented by its child objects.

4.3 Invocation and Encapsulation

An agent describes a set of operations with explicit or implicit timing comgta
We directly use agents defined in TAM in the context of our object model. Two new
agents are introduced:

(1) o .m/([in,out)) (Invocation) — o' is the name of an objeaty is the method
provided byo’ andin, out are optional parameters to be passed to the method
m’ as a substitution. This agent causes that an invocation to the method
optionally within and/orout

(2) m([in,out]) : o.M ([in’,out]) (Encapsulation) — o is a child object of the
objecto andnY is a method provided by'. The definition ofin, out must be
in accordance with that aff. This agent serves as the body of a method of an
active object. It transfers the invocationmfto that ofn.

4.4 Specification-oriented semantics of objects

In this section we give an ITL semantics for the objects presented above.

e A cyclic object:

cyclic (Object namgthread on P do A end =
finiten (len =P A (A; true))*
e A sporadic object:

an object in which the agemt is executed whenever the shiht is written to.
The interval between two successive executions can not be les$:than

sporadict (Object namethread on Evdo A end =
finite A (stable (Ev); (Skipa /EV# Oy/EV); (A; truealen=T))*

e For protected and passive objects, we need to identify all possible states f
method invocation. Let

Statusj € {Idle, Req, Act}

13



denote the status of a method, idle (or terminated), requested or active respec-
tively.
(1) A protected object:
is an object in which the method body is executed when method has been
requested, but the execution must be ‘mutually exclusive’ within the object.

protected (Object nameProvidedMethods (my,...,m,) end =
finite A Aj my A Mut

where
m = (Status; = Req A stable (Statusj)) ; Skip

(Statusj = Act A stable (Statusi) A Am ) ; Skip
(Statusj = Idle A stable (Status;))

and

Mut = O(X;(Statusj = Act) < 1)
(2) A passive object:

Is similar to the protected object except that it responds to all method invoca
tions at anytime:

passive (Object namgProvidedMethods (my, ..., My) end =
finite A Aj(my)

e An active object:
If ProvidedMethods(0) # (), then every methoth € ProvidedMethods(0) is im-
plemented by one of its child object.

active (Object namg ProvidedMethods (01, ...,0n) end =
Ai(0)
5 A small case study

The case study used here is a simplified version of “The Mine Control System”
[10], by keeping activities on motor and gas, and adding a sporadic activityeaitiat
by the operator, as depicted in Fig. 1.

The requirement of the system is given as follows.

14



Motor Control System

cmd: {START,STOP}
/l/ Ne/tl: N

operator_console gas_sensor motor_interface

ctrl: {ON,OFF}

Fig. 1. Motor Control System

(1) Every 20 time units, the gas level is checkédhe gas level is higher than 40
and the motor is orthen the motor is switched off within 5 time units.
(2) An operator can issue one of two commands: ‘Start’ or ‘Stop’. The System
reacts upon receiving the operator’'s command whenever it is received at least
10 time units has elapsed since the last command. The reaction is as follows:
e if the command is ‘Start’, the motor is switched off, and the gas level is not
higher than 40then the motor is switched on within 5 time units.
e if the command is ‘Stop’ and the motor is switched thren the motor is
switched off within 5 time units.

We can decomposethis requirement into the following three sub-requirements
(or components).

(1) React The reaction of the system depends on the command received from the
operator.
e The reaction is performed at leal time units since the last command was
received.
e if the command is
(a) ‘Start’, the motor is switched off, and the gas level is not higher than
40, then the motor is switched on withihtime units.
(b) ‘Stop’ and the motor is switched othen the motor is switched off
within 5 time units.
(2) Gas_Check
e Check the gas level eve?y time units.
e If the level is higher thad0 and the motor is in operatiorthen switch the
motor off within5 time units.

3 This decomposition may be done using various techniquesdad by the various struc-
tured methodologies
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(3) Switch Switch the motor on or off if requested. Only one operation can be
done at the same time.

We now give the formal specification Bfeact

fReactﬁ
(stablgCmd);
(Skipa v/Cmd# Oy/Cmd); (len =10 A femq; true)

)*
where

fema =
(read (Cmd) = start A read (Motor) = off A Gas_level < 40 A

len = 5 A stable (Motor) ; fon; stable (Motor)

) v
(read (Cmd) = stopa read (Motor) = ona

len = 5 A stable (Motor) ; foff ; stable (Motor)
)
and
= Skipa OMotor = (,/Motor+ 1,0n)

fot = Skipa OMotor = (y/Motor + 1, off)

freactcan be refined into the following object.

fReactC
sporadic;, (Reac} thread on Cmddo fcmgend

andf;mgcan be refined into

femd C
if (read (Cmd) = starta read (Motor) = off A Gas_ level< 40) then[5] (fon)

O (read (cmd) = stopa read (Motor) = on) then[5] (fof)
fi
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Sinceread (Cmd) and read (Motor) are not concrete constructs these should be
further refined. This is done with the introduction of variabte¥ that will get the
respectively the values of shur@sndandMotor, i.e,

C

varX,Yin

(X< Cmd|| Y < Motor) ||

if (X=starta Y = off A Gas_level< 40) then[5] (fon)
O (X=stopa Y = on) then[5] (fofr)

fi

The final step consists of refinirigh andfys into, respectively

fon C (on=- Motor)

forf C (off = Motor)

6 Discussion

In this paper we have introduced a wide-spectrum formal design language for the
development of real-time systems. The language is an extension to the Tempo-
ral Agent Model (TAM) with the capability of describing behaviors of objects and
method invocations. It also supports mixing of abstract statements (knospeas
ification’ statements and are formulae in Interval Temporal Logic) and febec
statements (which could be executed).

The novelty of our treatment lies in the underlying computational model. The model
was particularly constructed so that the resulting concrete system casilyeama-
lyzed for their schedulability in a distributed hard real-time executimrironment.

The computational model prescribes the use of object structure which fasititate
development of large scale systems. The object structure was based on aryindustr
strength object methodology known as HRT-HOOD. Within an object, agents are
statically allocated which may communicate asynchronously using (singkerwri
multiple reader) shunts. Agents are implemented as preemptive prioritychspoa
tasks; shunts are implemented as protected resources.

In order to derive a concrete design from an abstract specification a refibem

calculus has been developed. The refinement relaiedefined on a component
(agent, method and object) in a similar fashion to that of TAM. A compoAgist
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refinedby the componeny, denotedt’ C Y, if and only if

FIVI=F[x].

In [16] we presented a comprehensive set of refine laws for the development of
object-based real-time systems. However, instead of ITL we usedL.TAWem-

poral Agent Model Logic Language) as our underlying wide-spectrum language.
TAMLL is first order predicate logic with simple extensions to deal withgghand

the values held in variables and shunts. A disadvantage of TAMLL is that foemula
tend to grow rather rapidly in size and has an excessive use of the tinadleari

t. ITL formulae are short, simple and there is no need of time variabecause

of the temporal operators in ITL. The set of refinement rules of [16] can be easily
transformed into ITL based one.

Furthermore we presented in [16] a formal development method for object-based
real-time systems. This method is as follows: In the first stage, thgraeduilds

a system model and states the system’s requirements (or ‘expectation’) atbng w
assumptions/constraints of the environment. Using HRT-HOOD such system’s re
guirement may be decomposed into sub-requirement. Each sub-requirement is for-
malized, using the specification statement which is subsequently refinedhinto
jects using the refinement laws. So one proceeds as follows:

(1) Use HRT-HOOD to decompose the system requirement, naRiely to pro-
duce sub-requirementeq, recp, ..., reg,.

(2) Formalize each sub-requiremesd; using the specification statement of TAM
to producespeg, speg, ..., Speg. Note that the formal specificatioBPEC
which corresponds tREQ is given by

SPEC2 A speg
i€[1,n|

(3) Construct corresponding objeat based orspeg, such that (following laws
from 1to 5),

spe¢L obji

(4) The collection of resulting objects are then composed to produce the final
concrete system.

(5) Use HRT-HOOD to map the resulting concrete code to an equivalent Ada
code.

A characteristic of our approach is that during the refinement stages, alsaeges
timing information may be gathered in the form of ‘proof-obligations’. These obli-
gations are obviously proved correct (as a result of the soundness of the refinement
laws) and are vital to scheduling theorists. Once these obligations aratdeail
various scheduling tests and analysis may be applied. In fact these testsisould
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be applied after each refinement step; if the test is not valid then thesstgeated
until the obligation is satisfied.

It is clear that some of the timing characteristics may be left asaltes’ to be
determined at a later stage of development. These variables are cosdiyaihe
obligations themselves.

In addition, a graphical notation was provided for the presented object-based struc
ture. For example, an active objextwith child objectsoy, 09, ...,0n and methods

m, (iny,outy), ..., m(in, outy) which are defined in its child objects , ..., 0;, can

be represented as Fig. 2.

__ o0
obj_type A
ProvidedMethods(0) = {m, (iny,outy ), ..., m(ink, out) }

ChildObjects(0) =

01 0,
obj_type obj_type
. ProvidedMethods(0) =
{my (iny,outy),...}
ObjEnv(0y )
ObjEnv(0j, )
my (ing,outy) £

_Oik —On
obj_type obj_type
ProvidedMethods(0) = .
{my(ink,ouk),...}
ObjEnv(on)
ObjEnv(0;, )

my(ing, out) =

m, (iny,outy ) : o, .my (ing,outy )

;'r'{((ink,ouik) 1 0j, .M (ing, ouf)

Fig. 2. Active Object
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