
A Wide-Spectrum Language for Object-Based
Development of Real-time Systems

Z. Chen, H. Zedan,1 A. Cau and H. Yang

Software Technology Research Laboratory,
SERCentre,

De Montfort University,
The Gateway, Leicester LE1 9BH, England,

http://www.cms.dmu.ac.uk/STRL/

Abstract

A formal design notation is presented whose underlying computational model is object-
based. The object structure of the model is based on the practical, industry-strength Ob-
ject Oriented structured development technique HRT-HOOD.The computational model
has been specifically chosen because it leads to designs which can be analyzed for their
schedulability in a distributed hard real-time execution environment. It is a wide-spectrum
language supporting abstract description statements in Interval Temporal Logic (ITL) for
the description of the timing, functional, and communication behavior of the proposed real-
time system, and concrete Temporal Agent Model (TAM) statements with objects which
can be directly executed. The semantics of these concrete statements is defined denota-
tionally in specification-orientedstyle using ITL. A system specified at a high level of
abstraction can be systematically transformed into an executable program by the use of
sound ITL refinement rules.

Key words: object-based, wide-spectrum language, refinement calculus, Temporal Agent
Model, HRT-HOOD, Interval Temporal Logic

1 Introduction

Real-time systems are hard to model as their correctness depends on satisfying not
only functionalrequirements, as in most information processing systems, but also

1 The author wishes to acknowledge the funding received from the U.K. Engineering and
Physical Sciences Research Council (EPSRC) through the Research Grant GR/M/02583

Preprint submitted to Elsevier Preprint 15 March 1999

on non-functionalrequirements, such as timing, limited resources and dependabil-
ity.

Traditional real-time system development has been a somewhat ad-hoc affair.A
system is designed from an informal requirement specification as a number of
tasks with associated deadlines, execution periods, and resource requirements. The
worst-case execution time is calculated for those tasks, and a resource allocation
and schedule is computed which guarantees deadlines. Worst-case execution time,
allocation, and scheduling are all complex procedures and research is still active
in these areas; in the two latter cases the problems are known to be NP-complete.
Correctnessof systems developed in this way can only be performed by testing
and detailed code inspection. However, when the consequence of system failure is
catastrophic such as loss of life and/or damage to the environment, testing and code
inspection can not alone be relied upon.

Therefore, there is clearly scope forformalizingsome of the development process,
particularly in the area of requirements specification and design. For this purpose,
a large number of formalisms have been developed, such as RTTL [35], MTL [22],
XCTL [19], ITL [34], TAM [41,40,39,26], TCSP [38], TCCS [44], TACP [7], time
Petri Nets [30,37].

However, we have shown [14] that there are a significant number of limitations with
existing real-time development formalisms. Most important of these is the lack of
methodor guidance on how to use a formalism for both specification writing and
proving correctness. In addition, it is not clear how such formalisms can cope in
the development of large scale real-time systems.

In real-time systems development we would benefit from a method which assists
in the derivation of concrete designs from informal requirements specifications
through a ‘temporal’ refinement notion.

A number of refinement calculi already exist for real-time systems, but theyare ei-
ther incomplete or use an unrealistic computational model.PLtime [20] is a real-time
design language which consists of a CSP-like syntax with extensions for real-time.
However, the formalism is based on the maximal-parallelism hypothesis (i.e., the
assumption that there are always sufficient resources available) which istoo re-
strictive for most real time systems. In addition, sincePLtime does not provide a
separate specification statement as a syntactic entity, the refinement remains purely
in the concrete domain. Similarly, RT-ASLAN [1] is a refinement calculus which
refines a specification into concrete code, but this again relies on the maximal par-
allelism model. The Duration Calculus [46] (and to some extend timed Z in a recent
attempt), on the other hand, is a formalism based on ITL [34] and provides rules
which are only applicable at the logical level of development.

Furthermore, with the advent of the Object-Oriented (OO) method, as a powerful
approach in modeling and developing large-scale and complex software systems,

2

the quest for sound framework within which such a paradigm can be used has in-
creased. This has mainly been based on extending existing process-oriented for-
malisms:

� model-based: Z++ [23] and VDM++ [24];
� algebraic-based: HOSA [18,27] and Maude [32,31];
� Petri net: CLOWN [6,4,5], CO [2,3] and COOPN/2 [8,9] and
� logic-based: TRIO+ [33] and OO-LTL [11]

Although the use of formal methods in the development of real-time systems have
their benefits, turning them into a sound engineering practice has proved to be ex-
tremely difficult. Some “pure” formal methods may keep practically-oriented soft-
ware engineers from employing their benefits. This has led to investigating the
integration of formal methods with well established structured techniques used by
industry (e.g., System Analysis and Design Methodology (SSADM) [29], Your-
don [45] and Jackson [21], for non-real-time systems, and ROOM [13] and HRT-
HOOD [10] for real-time applications). As a result, in [28,42], both SSADM and
Yourdon were integrated with the formal notation Z respectively. An attempt to in-
corporate Data flow diagrams into the formal specification notation VDM was done
in [17,36]. Recently, Liu, et al [25], provided a method that integrates both formal
techniques, structured methodologies and the Object-Oriented paradigm. However,
they still lack mechanisms for the systematic development of concrete design/code
from formal specification. This has provisionally been addressed in [15].

The main objective of this work is to provide a wide-spectrum language in which
concrete and abstract constructs can be freely intermixed. This language forms the
basis of a formal development technique for the systematic derivation of a concrete
design from an abstract specification using sound refinement rules. The underlying
computational model of this development technique must be realistic and should
support the development of large-scale systems. By realistic we take the view that
it must reflect the basic developer’s intuition about the target application area and
that the resulting system can be analyzed for schedulability. In addition, to support
large-scale system development, the computational model should adopt features
advocated in the OO paradigm.

In Sect. 2 we present the syntax of Interval Temporal Logic (ITL) which is used
for the description of the abstract constructs. In Sect. 3 we present the Temporal
Agent Model (TAM) concrete constructs plus their semantics in ITL. In Sect.4 we
introduce the object model, based on that found in the industry strength structured
technique known as HRT-HOOD, and give the syntax (an extension to TAM) and
semantics (in ITL) of objects. In Sect. 5 we give a small case study to illustrate
the use of this language. In Sect. 6 we end with a discussion on our development
technique.

3

Table 1
Syntax of ITL

Expressions

e ::= � j a j A j g(e
1

; : : : ;en) j {a: f

Formulas

f ::= p(e
1

; : : : ;en) j :f j f
1

^ f
2

j 8v q f j Skip j f
1

; f
2

j f �

2 Interval temporal Logic

We base our work on Interval Temporal Logic (ITL) and its programming language
subset Tempura[34]. ITL will be used both as our abstract specification language
and to define the specification-oriented semantics of the concrete statements.

Our selection of ITL is based on a number of points. It is a flexible notation for both
propositional and first-order reasoning about periods of time. Unlike most temporal
logics, ITL can handle both sequential and parallel composition and offers powerful
and extensible specification and proof techniques for reasoning about properties in-
volving safety, liveness and projected time. Timing constraints are expressible and
furthermore most imperative programming constructs can be viewed as formulasin
a slightly modified version of ITL [12]. Tempura provides an executable framework
for developing and experimenting with suitable ITL specifications.

2.1 Syntax

An interval is considered to be a (in)finite sequence of states, where a state is a
mapping from variables to their values. The length of an interval is equal to one
less than the number of states in the interval (i.e., a one state interval has length 0).

The syntax of ITL is defined in Table 1 where� is an integer value,a is a static
variable (doesn’t change within an interval),A is a state variable (can change within
an interval),v a static or state variable,g is a function symbol,p is a predicate
symbol.

The informal semantics of the most interesting constructs are as follows:

� {a: f : the value ofa such thatf holds.
� Skip: unit interval (length 1).
� f

1

; f
2

: holds if the interval can be decomposed (“chopped”) into a prefix and
suffix interval, such thatf

1

holds over the prefix andf
2

over the suffix, or if the
interval is infinite andf

1

holds for that interval.
� f �: holds if the interval is decomposable into a finite number of intervals such

4

that for each of themf holds, or the interval is infinite and can be decomposed
into an infinite number of finite intervals for whichf holds.

These constructs enables us to define programming constructs like assignment, if
then else, while loop etc. In table 2 some frequently used abbreviations are listed.

Table 2
Frequently used abbreviations

true b= 0 = 0 true value

false b= :true false value

f
1

_ f
2

b= :(:f
1

^ :f
2

) or

f
1

� f
2

b= :f
1

_ f
2

implies

f
1

� f
2

b= (f
1

� f
2

)^ (f
2

� f
1

) equivalent

9v q f b= :8v q

:f exists
f b= Skip; f next

more b=

true non-empty interval

empty b= :more empty interval

inf b= true; false infinite interval

finite b= :inf finite interval

3f b= finite; f sometimes

2f b= :3:f always

3

a f b= finite; f ; true some subinterval

2

a f b= :(3

a
:f) all subintervals

f 0 b= empty 0-chopstar

f n+1

b= f ; f n (n+1)-chopstar

if f
0

thenf
1

elsef
2

b= (f
0

^ f
1

) _ (:f
0

^ f
2

) if then else

fin f b= 2(empty � f) final state

keep f b= 2

a
(Skip � f) all unit subintervals

e b= {a:(e= a) next value

fin e b= {a:fin(e= a) end value

A := e b=

A= e assignment

e
1

 e
2

b= finite^ (fin e
1

) = e
2

temporal assignm.

e
1

gets e
2

b= keep(e
1

 e
2

) gets

stable e b= e gets e stability

intlen(e) b= 9 I q

(I = 0) ^ (I gets I+1) ^ I e) interval lengthe

len b= {a: intlen(a) interval length

2.2 Data Representation in ITL

Introducing type system into specification languages has its advantages and dis-
advantages. An untyped set theory is simple and is more flexible than any simple

5

typed formalism. Polymorphism, overloading and subtyping can make a type sys-
tem more powerful but at the cost of increased complexity. While types serve little
purpose in hand proofs, they do help with mechanized proofs.

There are two basic inbuilt types in ITL (which can be given pure set-theoretic
definitions). These are integersN (together with standard relations of inequality
and quality) and Boolean (trueandfalse). In addition, the executable subset of ITL
(Tempura) has basic types: integer, character, Boolean, list and arrays.

Further types can be built from these by means of� and the power set operator,P
(in a similar fashion as adopted in the specification language Z).

For example, the following introduces a variablex of typeT

(9x : T) � f b= 9x� type(T)^ f

Heretype(T) denotes a formula describing the desired type. For example,type(T)
could be0 � x � 7 and so on. Although this might seem to be rather inexpressive
type system, richer type can be added following that of Spivey [43].

3 Temporal Agent Model

The Temporal Agent Model (TAM) [41,40,39,26] was developed to be a realistic
formal software development method for real-time systems. The method is based
on refinement calculus and consists of a logic, a wide-spectrum language and a
refinement calculus.

3.1 Computational Model

A real-time system in TAM is taken to be a finite collection of possibly concur-
rently executing computation agents which communicate asynchronously via time-
stamped shared data areas called shunts. Shunts are passive shared memoryspaces
that contain two values: the first gives the time at which the most recent write took
place, and the second gives the value that was most recently written. Systems them-
selves can be viewed as single agents and composed into larger systems.

At any time, a system can be thought of having a unique state, defined by the values
in the shunts and local variables. An agent is described by a set of computations,
which may transform a local data space and may read and write shunts during
execution. The computation may be nondeterministic. In particular:

6

� Time is global, i.e., a single clock is available to every agent and shunt. The time
domain is discrete, linear, and model-led naturally by the natural numbers.

� No state change may be instantaneous.
� An agent may start execution either as a result of a write event on a specific shunt,

or as the result of some condition on the current time: these two conditions model
sporadic and periodic tasks respectively.

� An agent may have deadlines on computations and communication. Deadlines
are considered to be hard, i.e., there is no concept of deadline priority, and all
deadlines must me met by the run-time system. We are currently investigating
the inclusion of prioritized deadlines into the language.

� A data space is created when an agent starts execution, with nondeterministic
initial values; the data space is destroyed when the agent terminates. No agent
may read or write another agent’s local data space.

� A system has a static configuration, i.e., the shunt connection topology remains
fixed throughout the lifetime of the system.

� An agent’s output shunts are owned by that agent, i.e., no other agent may write
to those shunts, although many other agents may read them.

� Shunt writing is destructive, but shunt reading is not.

3.2 TAM Syntax

Agents in TAM are described as follows.

A ::= w : � j Skip j �t j x := e j x(s j e) s j A; A

0

j

varx : T inA j shunts : T inA j [t]A j ift 2i2I gi thenAi fi j

A u A

0

j A�

s
t A

0

j A k A

0

j loopfor n period t A:

wherew is a set of computation variables and shunts;� is a predicate in ITL,
which we define below;t is a time;x is a variable of typeT; e is an expression on
variables;s is a shunt of typeTime�T; I is some finite indexing set;gi is a boolean
expression; andn is a natural number.

Informally:

� w : � is a specification statement. It specifies that only the variables in theframe
w may be changed, and the execution must satisfy�. � is a formula expressed
in ITL.

� The agentSkipis a delay of 1.
� The agent�t terminates aftert time units.
� x := e evaluates the expressione, using the values found in variables at the start

time of the agent, and assigns it tox. The expressionemay not include the values
held in shunts: it may only use the values held in variables.

7

� x(s performs an input from shunts, storing the value inx; the type ofx must
be a time–value pair.

� e) s writes the current value of expressione to shunts, time-stamping it with
the time of the write.

� A; A

0 performs a sequential composition ofA andA0.
� var x : T in A definesx to be a new local variable of typeT within A; its initial

value is chosen nondeterministically.
� shunt s : T in A definess to be a new local shunt of typeTime�T within A; its

initial value is chosen nondeterministically, but it is time-stamped with the time
of its declaration.

� [t]A gives agentA a duration oft: if the agent terminates beforet seconds have
elapsed, then the agent should idle to fill this interval; if the agent does not ter-
minate withint seconds, then it is considered to have failed.

� ift 2i2I gi thenAi fi evaluates all the boolean guardsgi , and executes anAi

corresponding to a true guard; if all the guards evaluate to false, then the agent
terminates correctly. The evaluation of the guards should take preciselyt time
units; if necessary, the agent should idle to fill this interval. We shall sometimes
omit the parametert if we do not want to specify it. We shall sometimes write
this construct asift g

1

thenA
1

2 g
2

thenA
2

2 : : :2 gn thenAn fi.
� A u A

0 forms a nondeterministic choice betweenA andA0.
� A�

s
t A

0 monitors shunts for t time units: if a write occurs within this time, then
it executesA0; otherwise it times-out and executesA.

� A k A

0 executes the two agents concurrently, terminating when both agents ter-
minate.

� loopfor n period t A executesA n times, giving each a duration oft.

We note here that no agent may share its local state space with concurrently exe-
cuting agents, and only one concurrent agent may write to any given shunt: these
restrictions allow the development of a compositional semantics and refinement
calculus.

3.3 TAM Semantics

The semantics of TAM is given denotationally in terms of an ITL formula. We
begin by first introducing some extensions to ITL in order to describe the formal
semantics of TAM.

Let W be a set of state variables thenframe(W) denotes that only the variables in
W can possible change, i.e., the variables outside the frame don’t change.

Here, we adopt a combined state-communication model for the system behavior
where the observables correspond to the following variables:

� The normal state variables of ITL.

8

� variabless representing shunts whose values are tuples(t;v) wheret is a stamp
andv the value written. The stamp value ofswill be denoted by

p

sand the value
stored ins will be denoted byread(s).

The domain of the variabletime is a linear order(TIME;<;+;0), where 0 is the
least element, and + is an addition operator.

The ITL semantics of TAM is given as follows

W : f b= frame(W) ^ f

Skip b= Skip

�t b= len = t

x := e b=

x= e

x(s b= x
1

=

p

s^ x
2

= read(s)

x) s b=

s= (

p

s+1;x)

A; A

0

b= A; A

0

varx inA b= 9x � A

shunt s inA b= 9s�
p

s= 0 ^A

[t]A b= �t ^ (A ; true) ^ (A � len <= t)

ift 2i2I gi thenAi fi b=

W

i2I([t] (gi ^ Ai)) _ [t] (
V

i2I :gi)

Au A

0

b= A _A

0

A�

s
t A

0

b= (�t ^ stable(s)) ; A _ (�t ^ :stable(s)) ; A0

A k A

0

b= A ^A

0

loopfor n period t A b= ([t]A)

n

3.4 Procedures

We can trivially introduce various structures within TAM such asfunctionandpro-
cedure. We show this by introducing procedures.

Let A be a TAM agent andx
1

;x
2

; :::;xn be a set of state variables which are free in
A. A procedureP is denoted by

P(x
1

;x
2

; :::;xn) b= A

The semantics of which is given by

P(y
1

;y
2

; :::;yn) b= A(y
1

=x
1

;y
2

=x
2

; :::;yn=xn)

9

4 Object model

In this section we introduce the object structure which we use in our framework.
Such structure is being used in an industry-strength structured methodology known
as HRT-HOOD [10].

4.1 Computation

A real-time system is viewed as a collection of concurrent activities which are
initiated either periodically or sporadically with services which can berequested
by the execution of the activities. The operations of the activities and services, as
threadsandmethods, are allocated to the correspondingobjects(an encapsulated
operation environment for the thread or methods) according to their functional and
temporal requirements and the relationships between them. Like HRT-HOOD,five
types of objects are defined:

(1) sporadic object — defines a unique thread which activates an operation spo-
radically by response to external events. The thread can not be requested and
executed by other methods’ invocations, however, it can invoke methods pro-
vided by other objects. The thread may be concurrent with other activities in
the system. A minimum interval can be specified to restrain responses to con-
tinuous event occurrences. Sporadic objects are used to model entities in a
system which are involved in random activities.

(2) cyclic object — is similar to a sporadic object except that its thread specifies
an operation which is executed periodically. A cyclic object defines a period
to specify how often the operation is and it is fixed. Every execution of the
operation must be terminated within this period. Cyclic objects are used to
model entities in a system which are involved in periodic activities.

(3) protected object — defines services which can be invoked. The services are
implemented bymethodswhich can be requested by others for execution. The
methods can be requested arbitrarily, but their executions must be mutually
exclusive. The execution order of invocations depends on their times of re-
quest. A method in a protected object can only request the methods which
are (in)directly implemented by passive objects. Protected objects areused to
model shared critical resources accessed by different objects or methods.

(4) passive object — is similar to a protected object except there are no con-
straints on invocations of its methods. A method in a passive object can be
arbitrarily requested and immediately executed as a part of its clientwhenever
being requested. A method in a passive object can only request the methods
which are (in)directly implemented by other passive objects. Passive objects
are used to define non-interfering operations on resources.

10

(5) active object — defines a framework for a number ofrelatedobjects which
are referred to as itschild objects. An active object can be viewed as an inde-
pendent system or subsystem. It encapsulates the methods of its child objects.
Any object outside an active object can not request the methods defined in
its child objects directly but through a method defined by it. The signature
of a method defined in an active object must be consistent with that of its
counterpart except its name. An active object can not include itself as a child
object directly or indirectly and an object can not be a child object of different
objects.

Threads activate and terminate with the corresponding objects and are concurrent
with each other. Methods are activated by invocations and their executions may be
either concurrent or sequential. Invocations of methods can be either asynchronous
or synchronous. Recursive invocations between methods are prohibited, neither di-
rectly nor indirectly.

4.2 Syntactic Structure

An object consists of a declaration and method(s) in a structure. The declaration
presents the definitions of attributes and/or an execution environment for methods
defined in the object. The attributes of an object include:

� object type— indicates the object is eitheractive, sporadic, cyclic, protectedor
passive.

� provided methods— signatures of the methods provided by the object for other
objects. We useProvidedMethods(o) to denote the provided method set of an
objecto whereo is sometimes dropped if no confusion is caused. The signa-
tures must be accordant with their definitions. They are declared in the form of
m(in;out), wherem is a method name which is free in the object.in andout are
sets which present parameters transfered betweenmand its clients.card(in)� 0

andcard(out)� 0 (wherecard denotes cardinality of the set). We usein(m) and
out(m) to denote them.

� used methods— declare the methods invoked by the object and the objects which
provide the methods. We useUsedMethods(o) to denote the used method set of
an objecto whereo is sometimes dropped if no confusion is caused. The ele-
ments of the setUsedMethods(o) take the form of(o0;m0

), wherem0 is a method
to be invoked byo and is defined ino0. UsedMethods(o) definesuserelationships
betweeno and objects inUsedMethods(o). Such relationships specify control
flows between objects and together within(m) andout(m), data flows are also
specified.

Other attributes vary with the type of objects:

� the activation interval of the thread for a cyclic object.

11

� the minimum activation interval of the thread for a sporadic object.
� the child object set for an active object. We useChildObjects(o) to denote the

child object set ofo if o is an active object.ChildObjects(o) specifies aninclude
relationship betweeno and its child objects based on which the decomposition
process is achieved.

The environment of a non-active object is a set of data over which the methods of
the object execute for computations and communications. The data include con-
stants, variables and shunts. For cyclic and sporadic objects, an activationperiod
and a minimum activation interval are specified in the environment declaration re-
spectively. We useObjEnv(o) to denote the environment set of an objecto.

A method consists of a head and a body. The head specifies a method name and
a local environment (if necessary) of the method. The body specifies operations
over either the object environment or the method environment, or both. We use
Methods(o) to denote the set of method defined by the objecto. 2 The opera-
tions are described by means of agents which may be either abstract or concrete.
A method can define its local execution environment. We useMthEnv(m) to denote
the local environment of the methodm. A methodm is defined in the form of

m([in;out]) b= MthEnv(m)A end

whereA (a TAM agent) is the body of methodm, in andoutare its input and output
parameter list. We useAm to denote the body of a methodm.

The syntax of an object is as follows.

Method

m ::= hMethod namei[in;out] : A end

Object

o ::= cyclic hObject namei thread on P do A end j

sporadicT hObject namei thread on Ev do A end j

protected hObject namei ProvidedMethods (m
1

; : : : ;mn) end j

passive hObject namei ProvidedMethods (m
1

; : : : ;mn) end j

active hObject namei ProvidedMethods (o
1

; : : : ;o
2

) end

whereA is a TAM agent,ProvidedMethods is a set of provided methods,P andT
are times, andEv is a shunt.

2 Obviously,ProvidedMethods(o)�Methods(o)

12

An active object defines a system or subsystem which consists of a number of
related objects as its child objects, optionally with a number of methods which are
implemented by its child objects.

4.3 Invocation and Encapsulation

An agent describes a set of operations with explicit or implicit timing constraints.
We directly use agents defined in TAM in the context of our object model. Two new
agents are introduced:

(1) o0:m0

([in;out]) (Invocation) — o0 is the name of an object,m0 is the method
provided byo0 andin, out are optional parameters to be passed to the method
m0 as a substitution. This agent causes that an invocation to the methodm0

optionally with in and/orout.
(2) m([in;out]) : o0:m0

([in0;out0]) (Encapsulation) — o0 is a child object of the
objecto andm0 is a method provided byo0. The definition ofin, out must be
in accordance with that ofm0. This agent serves as the body of a method of an
active object. It transfers the invocation ofm to that ofm0.

4.4 Specification-oriented semantics of objects

In this section we give an ITL semantics for the objects presented above.

� A cyclic object:

cyclic hObject namei thread on P do A end b=

finite^ (len = P ^ (A ; true))�

� A sporadic object:
an object in which the agentA is executed whenever the shuntEv is written to.
The interval between two successive executions can not be less thanT:

sporadicT hObject namei thread on Ev do A end b=

finite^ (stable(Ev) ; (Skip^
p

Ev 6=

p

Ev) ; (A ; true^ len= T))�

� For protected and passive objects, we need to identify all possible states for
method invocation. Let

Statusi 2 fIdle;Req;Actg

13

denote the status of a method, idle (or terminated), requested or active respec-
tively.

(1) A protected object:
is an object in which the method bodyAi is executed when methodmi has been
requested, but the execution must be ‘mutually exclusive’ within the object.

protected hObject namei ProvidedMethods (m
1

; : : : ;mn) end b=

finite^
V

i mi ^Mut

where

mi b= (Statusi =Req^ stable(Statusi)) ; Skip;

(Statusi = Act^ stable(Statusi)^Ami) ; Skip;

(Statusi = Idle^ stable(Statusi))

and

Mut b= 2(�i(Statusi = Act)6 1)

(2) A passive object:
Is similar to the protected object except that it responds to all method invoca-
tions at anytime:

passive hObject namei ProvidedMethods (m
1

; : : : ;mn) end b=

finite^
V

i(mi)

� An active object:
If ProvidedMethods(o) 6= ;, then every methodm2 ProvidedMethods(o) is im-
plemented by one of its child object.

active hObject namei ProvidedMethods (o
1

; : : : ;on) end b=

V

i(oi)

5 A small case study

The case study used here is a simplified version of “The Mine Control System”
[10], by keeping activities on motor and gas, and adding a sporadic activity initiated
by the operator, as depicted in Fig. 1.

The requirement of the system is given as follows.

14

Motor Control System

operator_console motor_interfacegas_sensor

ctrl: {ON,OFF}

level: N

cmd: {START,STOP}

Fig. 1. Motor Control System

(1) Every 20 time units, the gas level is checked.If the gas level is higher than 40
and the motor is on,then the motor is switched off within 5 time units.

(2) An operator can issue one of two commands: ‘Start’ or ‘Stop’. The System
reacts upon receiving the operator’s command whenever it is received at least
10 time units has elapsed since the last command. The reaction is as follows:
� if the command is ‘Start’, the motor is switched off, and the gas level is not

higher than 40,then the motor is switched on within 5 time units.
� if the command is ‘Stop’ and the motor is switched on,then the motor is

switched off within 5 time units.

We can decompose3 this requirement into the following three sub-requirements
(or components).

(1) React: The reaction of the system depends on the command received from the
operator.
� The reaction is performed at least10 time units since the last command was

received.
� if the command is

(a) ‘Start’, the motor is switched off, and the gas level is not higher than
40, then the motor is switched on within5 time units.

(b) ‘Stop’ and the motor is switched on,then the motor is switched off
within 5 time units.

(2) Gas Check:
� Check the gas level every20 time units.
� If the level is higher than40 and the motor is in operation,then switch the

motor off within5 time units.

3 This decomposition may be done using various techniques provided by the various struc-
tured methodologies

15

(3) Switch: Switch the motor on or off if requested. Only one operation can be
done at the same time.

We now give the formal specification ofReact.

fReact b=

(stable(Cmd);

(Skip^
p

Cmd 6=

p

Cmd) ; (len = 10 ^ fcmd; true)

)

�

where

fcmd b=

(read(Cmd) = start^ read(Motor) = off ^ Gas level� 40 ^

len = 5 ^ stable(Motor) ; fon ; stable(Motor)

) _

(read(Cmd) = stop^ read(Motor) = on^

len = 5 ^ stable(Motor) ; foff ; stable(Motor)

)

and

fon b= Skip^ Motor= (

p

Motor+1;on)

foff b= Skip^ Motor= (

p

Motor+1;off)

fReactcan be refined into the following object.

fReactv

sporadic
10

hReacti thread on Cmddo fcmd end

andfcmd can be refined into

fcmdv

if (read(Cmd) = start^ read(Motor) = off ^ Gas level� 40) then[5] (fon)

2 (read(cmd) = stop^ read(Motor) = on) then[5] (foff)

fi

16

Since read(Cmd) and read(Motor) are not concrete constructs these should be
further refined. This is done with the introduction of variablesX;Y that will get the
respectively the values of shuntsCmdandMotor, i.e,

v

varX;Y in

(X(Cmdk Y(Motor) k

if (X = start^ Y= off ^ Gas level� 40) then[5] (fon)

2 (X = stop^ Y= on) then[5] (foff)

fi

The final step consists of refiningfon andfoff into, respectively

fon v (on)Motor)

foff v (off)Motor)

6 Discussion

In this paper we have introduced a wide-spectrum formal design language for the
development of real-time systems. The language is an extension to the Tempo-
ral Agent Model (TAM) with the capability of describing behaviors of objects and
method invocations. It also supports mixing of abstract statements (known as ‘spec-
ification’ statements and are formulae in Interval Temporal Logic) and ‘concrete’
statements (which could be executed).

The novelty of our treatment lies in the underlying computational model. The model
was particularly constructed so that the resulting concrete system can be easily ana-
lyzed for their schedulability in a distributed hard real-time executionenvironment.
The computational model prescribes the use of object structure which facilitates the
development of large scale systems. The object structure was based on an industry-
strength object methodology known as HRT-HOOD. Within an object, agents are
statically allocated which may communicate asynchronously using (single writer -
multiple reader) shunts. Agents are implemented as preemptive priority dispatched
tasks; shunts are implemented as protected resources.

In order to derive a concrete design from an abstract specification a refinement
calculus has been developed. The refinement relationv is defined on a component
(agent, method and object) in a similar fashion to that of TAM. A componentX is

17

refinedby the componentY, denotedX v Y, if and only if

F [[Y]])F [[X]] :

In [16] we presented a comprehensive set of refine laws for the development of
object-based real-time systems. However, instead of ITL we used TAMLL (Tem-
poral Agent Model Logic Language) as our underlying wide-spectrum language.
TAMLL is first order predicate logic with simple extensions to deal with times and
the values held in variables and shunts. A disadvantage of TAMLL is that formulae
tend to grow rather rapidly in size and has an excessive use of the time variable
t. ITL formulae are short, simple and there is no need of time variablet because
of the temporal operators in ITL. The set of refinement rules of [16] can be easily
transformed into ITL based one.

Furthermore we presented in [16] a formal development method for object-based
real-time systems. This method is as follows: In the first stage, the designer builds
a system model and states the system’s requirements (or ‘expectation’) along with
assumptions/constraints of the environment. Using HRT-HOOD such system’s re-
quirement may be decomposed into sub-requirement. Each sub-requirement is for-
malized, using the specification statement which is subsequently refined intoob-
jects using the refinement laws. So one proceeds as follows:

(1) Use HRT-HOOD to decompose the system requirement, namelyREQ, to pro-
duce sub-requirements:req

1

, req
2

, ..., reqn.
(2) Formalize each sub-requirementreqi using the specification statement of TAM

to producespec
1

, spec
2

, ..., specn. Note that the formal specification,SPEC,
which corresponds toREQ, is given by

SPEC,
V

i2[1;n]
speci

(3) Construct corresponding objectoi based onspei, such that (following laws
from 1 to 5),

speci vobji

(4) The collection of resulting objects are then composed to produce the final
concrete system.

(5) Use HRT-HOOD to map the resulting concrete code to an equivalent Ada
code.

A characteristic of our approach is that during the refinement stages, all necessary
timing information may be gathered in the form of ‘proof-obligations’. These obli-
gations are obviously proved correct (as a result of the soundness of the refinement
laws) and are vital to scheduling theorists. Once these obligations are available,
various scheduling tests and analysis may be applied. In fact these tests couldalso

18

be applied after each refinement step; if the test is not valid then the stepis repeated
until the obligation is satisfied.

It is clear that some of the timing characteristics may be left as ‘variables’ to be
determined at a later stage of development. These variables are constraints by the
obligations themselves.

In addition, a graphical notation was provided for the presented object-based struc-
ture. For example, an active objecto with child objectso

1

, o
2

, ...,on and methods
m0

1

(in
1

;out
1

), ...,m0

k(ink;outk) which are defined in its child objectsoi
1

, ...,oik can
be represented as Fig. 2.

o
obj type A
ProvidedMethods(o) = fm0

1

(in
1

;out
1

); :::;m0

k(ink;outk)g

ChildObjects(o) =

o
1

obj type
...

ObjEnv(o
1

)

:::

oi
1

obj type
ProvidedMethods(o) =

fm
1

(in
1

;out
1

); :::g

...

ObjEnv(oi
1

)

m
1

(in
1

;out
1

),

...

...

oik
obj type
ProvidedMethods(o) =

fmk(ink;outk); :::g
...

ObjEnv(oik)

mk(ink;outk),
...

:::

on

obj type
...

ObjEnv(on)

m0

1

(in
1

;out
1

) : oi
1

:m
1

(in
1

;out
1

)

...
m0

k(ink;outk) : oik :mk(ink;outk)

Fig. 2. Active Object

19

References

[1] B. Auernheimer and R. Kemmerer. RT-ASLAN: a Specification Language for
Real-Time Systems.IEEE Transactions on Software Engineering, 12(9):879–889,
September 1986.

[2] R. Bastide. Objets Cooṕeratifs: un formalisme pour la modélisation des systèmes
concurrents. PhD thesis, Université Paul Sabatier de Toulouse, 1992.

[3] R. Bastide and P. Palanque. Cooperative objects : a concurrent petri net based object-
oriented language. InIEEE / System Man and Cybernetics 93, Le Touquet (France),
October 1993. Elseiver Science Publisher.

[4] E. Battiston, A. Chizzoni, and F. De Cindio. Inheritanceand concurrency in clown.
In Proceedings of the Application and Theory of Petri Nets 1995workshop on Object-
Oriented Programming and Models of Concurrency, Italy, 1995.

[5] E. Battiston, A. Chizzoni, and F. De Cindio. Modeling a cooperative environment
with clown. In G. Agha, F. De Cindio, and A. Yonezawa, editors, Proceedings of
the second international workshop on Object-Oriented Programming and Models of
Concurrency within the 16th International Conference on Application and Theory of
Petri Nets, pages 12–24, Osaka, Japan, 1996.

[6] E. Battiston and F. De Cindio. Class orientation and inheritance in modular algebraic
nets. InProceedings International Conference on Systems, Man and Cybernetics,
volume 2, pages 717–723, Palais de L’Europe Hôtel Westminster, Le Touquet, France,
October 1993.

[7] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60:109–137, 1984.

[8] Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. COOPN/2 : A specification
language for distributed systems engineering. Technical Report 96/167,
Software Engineering Laboratory, Swiss Federal Instituteof Technology, Lausanne,
Switzerland, 1996.

[9] Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. Object-oriented nets with
algebraic specifications: The CO-OPN/2 formalism. In G. Agha and F. De Cindio,
editors,Advances in Petri Nets on Object-Orientation, LNCS. Springer-Verlag, 1997.
To appear.

[10] A. Burns and A. Wellings.HRT-HOOD: A Structured Design Method for Hard Real-
Time Systems. Elsevier, 1995.

[11] E. Canver and F. von Henke. Formal specification and verification of objectbased
systems in a temporal logic setting. Technical report, University of Newcastle Upon
Tyne, England, Department of Computing Science, 1997. Technical Report Second
Year Report of the Esprit Long Term Research Project 20072 Design For Validation.

[12] A. Cau and H. Zedan. Refining interval temporal logic specifications. In M. Bertran
and T. Rus, editors,Transformation-Based Reactive Systems Development, number
1231 in LNCS, pages 79–94. AMAST, Springer-Verlag, 1997.

20

[13] B. Celic, G. Gullekson, and P. Ward.Real-Time Object-Oriented Modeling. John
Wiley & Sons, 1994.

[14] Z. Chen. Formal methods for object-oriented paradigm applied to the engineering of
real-time systems: A review. Technical report, De MontfortUniversity, 1997.

[15] Z. Chen, A. Cau, H. Zedan, and H. Yang. Integrating structured oo approaches with
formal techniques for the development of real-time systems. To appear in International
Journal of Information and Software Technology, 1999.

[16] Z. Chen, A. Cau, H. Zedan, and H. Yang. A wide-spectrum language for object-based
development of real-time systems. To appear in International Journal of Information
Sciences, 1999.

[17] M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Informal andforaml requirements
specification languages: Bridging the gap. IEEE Transactions on Software
Engineering, 17(5):454–466, May 1991.

[18] J. Goguen and R. Diaconescu. Towards an algebraic semantics for the object paradigm.
In In RECENT trends in data type specification: workshop on specification of abstract
data types: COMPASS: selected papers, number 785 in LNCS. Springer Verlag, 1994.

[19] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic. In
Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, pages
402–413, Philadelphia, Pennsylvania, 1990. IEEE ComputerSociety Press.

[20] J. He. Specification oriented semantics for ProCoS programming languagePLtime.
Technical Report PRG-OU-HJF-71, Oxford University, 1991.

[21] M. A. Jackson.System Development. Prentice Hall, New Jersey, 1983.

[22] R. Koymans. Specifying real-time properties with metric temporal logic.Real-Time
Systems, 2(4):255–299, 1990.

[23] K. Lano. Z++. In J. E. Nicholls, editor,Proceedings of Z User Workshop Oxford.
Springer-Verlag, 1990.

[24] K. Lano. Distributed system specification in vdm++. InProceedings of FORTE’95.
Chapman and Hall, 1995.

[25] S. Liu, A. J. Offutt, Y. Sun, and M. Ohba. Sofl: A formal engineering methodology
for industrial applications.IEEE Transactions on Software Engineering, 24(1), 1998.

[26] G. Lowe and H. Zedan. Refinement of complex systems: a case study.The Computer
Journal, 38(10), 1995.

[27] G. Malcom and J. Goguen. Proving correctness of refinement and implementation.
Technical Report Prg-114, Oxford University, Oxford Technical Monograph, 1994.

[28] K. C. Mander and F. Polack. Rigorous specification usingstructured systems analysis
and Z. Information and Software Technology, 37(5–6):285–291, 1995.

[29] M. Meldrum and P. Lejk.SSADM techniques: an introduction to Version 4. Chartwell-
Bratt, 1993.

21

[30] P. M. Merlin and A. Segall. Recoverability of communication protocols - implications
of a theoretical study. IEEE Transactions on Communications, pages 1036–1043,
September 1976.

[31] J. Meseguer. Research Directions in Concurrent Object-Oriented Programming,
chapter A logical theory of concurrent objects and its realization in the maude
language, pages 314–390. The MIT Press, Cambridge, Mass., 1993.

[32] J. Meseguer and T. Winkler.Parallel Programming in Maude, volume 574 ofLNCS,
pages 253–293. Springer-Verlag, New York, N.Y., 1992.

[33] A. Morzenti and P. San Pietro. Object-oriented logicalspecification of time-critical
systems.ACM Transactions on Software Engineering and Methodology, 3(1):56–98,
January 1994.

[34] B. Moszkowski. A temporal logic for multilevel reasoning about hardware.Computer,
18(2):10–19, February 1985.

[35] J. S. Ostroff and W. M. Wonham. A temporal logic approachto real time control.
In Proc. of 24th Conf. Decision and Control, pages 6565–6567, Fort Lauderdale, FL,
USA, December 1985.

[36] N. Plat, J. Katwijk, and K. Pronk. A case for structured analysis/formal design. In
Proceedings of VDM’91, number 551 in LNCS. Springer-Verlag, 1991.

[37] C. Ramchandani. Analysis of asynchronous concurrent systems by timed petri nets.
Technical Report MAC TR 120, MIT, February 1974.

[38] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe.
Timed CSP: Theory and practice. In J. W. de Bakker, C. Huizing, W. P. de Roever, and
G. Rozenberg, editors,Proceedings of Real-Time: Theory in Practice, volume 600 of
LNCS, pages 640–675, Berlin, Germany, June 1992. Springer.

[39] D. Scholefield, H. Zedan, and He Jifeng. A specification-oriented semantics for the
refinement of real-time systems.Theoretical Computer Science, 131(1):219–241,
August 1994.

[40] D. J. Scholefield, H. Zedan, and J. He. A predicative semantics for the refinement of
real-time systems. InLNCS, number 802, pages 230–249. Springer-Verlag, 1994.

[41] David Scholefield, Hussein Zedan, and Jifeng He. Real-time refinement: Semantics
and application. In Andrzej M. Borzyszkowski and Stefan Sokolowski, editors,
Mathematical Foundations of Computer Science 1993, 18th International Symposium,
volume 711 oflncs, pages 693–702, Gdansk, Poland, 1993. Springer.

[42] L. T. Semmens and P. M. Allen. Using Yourdon and Z: An approach to formal
specification. In J. E. Nicholls, editor,Z User Workshop, Oxford 1990, Workshops
in Computing, pages 228–253. Springer-Verlag, 1991.

[43] J. M. Spivey. Richer types for Z.Formal Aspects of Computing, 8:565–584, 1996.

22

[44] Wang Yi. CCS + time = an interleaving model for real time systems. In
Javier Leach Albert, Burkhard Monien, and Mario Rodrı́guez-Artalejo, editors,
Automata, Languages and Programming, 18th International Colloquium, volume 510
of LNCS, pages 217–228, Madrid, Spain, 1991. Springer-Verlag.

[45] E. Yourdon. Modern Structured Analysis. Prentice-Hall, Englewood Cliffs, New
Jersey, 1989.

[46] C. Zhou, C. Hoare, and A. Ravn. A calculus of durations.Information Processing
Letters, 40(5):269–276, December 1991.

23

