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Abstract

We propose a sound and practical approach, based on
a formal method (known as Interval Temporal Logic), to
cope with ‘change’ and analyse its effect. The approach al-
lows us to capture a snapshot of system’s behaviour over
which various interesting properties, such as liveness, time-
liness and safety properties, can be validatedcomposition-
ally. These properties may include invariants that are re-
quired to be valid after changes have taken place. We also
present and evaluate the design and implementation of a
formal tool, AnaTempura, which supports the developed
approach. A case study is presented to illustrate our ap-
proach and the tool.

1. Introduction

Computing systems, both hardware and software, are
continually evolving. This evolution will inevitably leadto
their rapid growth in size and change to their original re-
quirements rendering them to ‘legacy’ status. In fact, some
consider a system to be in a legacy state even before it is
being deployed!

The evolution of software system could be due to
changes in the original requirements, adopting a different
hardware platform or to improve its efficiency. The clas-
sification of maintenance approach [15] indicates the var-
ious types of change that can be seen through the main-
tenance process. As a result, this is seen as an indication
of the type of evolutionary changes that may occur to soft-
ware. Because of its complexity, the likelihood of subtle
errors is much greater and some of these errors could have
catastrophic consequences such as loss of life, money, time
or damage to the environment. Therefore managingsys-
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tem evolutionis a crucial aspect in system development and
maintenance.

Hence, a fundamental issue that faces a software main-
tainer is how to response to ‘change’. This response must
be undertaken rapidly, efficiently and, above all, correctly.
As the maintainers are not usually the original developers
of the system, responding to changes requires understand-
ing the system, identify the necessary changes and then per-
form the changes.

For critical applications, using formal methods, which
are mathematically-based techniques, is fundamental as
they greatly increase our understanding of a system by re-
vealing inconsistencies, ambiguities, and incompleteness
that might otherwise go undetected [27, 16].

For large scale systems, comprehension, by necessity,
will be partial. Corrective maintenance is regarded as the
most common activity during the life time of the program.
‘Hypotheses’, at the code, algorithmic and application do-
main levels, are major drivers to program understanding in
the corrective maintenance activities [24, 4, 14]. Program
slicing, both static [25, 8] and dynamic [13, 10, 1], is also a
technique often used in maintenance activities such as com-
prehension, design recovery and risk migration. The tech-
nique was further used to identify functionalities [9]. De-
termining slicing criteria [7] was achieved using symbolic
execution [11].

Another important issue in managing change is to estab-
lish mechanisms to cope with its propagation. The change
is often made to a specific part of the system. After the
change, that part may no longer be compatible with other
parts of the system, as it may no longer provide what was
originally expected or it may now require different services
for the rest of the system. These dependencies need to be
checked, validated and re-established if they are lost. The
process in which the change spreads through the software is
sometimes called the ripple effect of change [28]. Various
techniques have been proposed to model change [2, 3] and
and its impact [21, 20, 19]. The prediction of the size and
location of change has also been considered (e.g. [8]).



Data clustering techniques [26] were used [5] to study
the process of software evolution, focusing on calling struc-
ture and data used within (and externally accessible) the ap-
plication.

This paper aims to present a sound technique, together
with its supporting tool, for handlingcontinuouschange
in system development and maintenance. Using our tech-
nique, we can validate and analyse system’s behaviours of
interest. The validation and analysis are performed within
a single logical framework using Interval Temporal Logic
(ITL [17, 6]) and its executable subset, Tempura [18]. Be-
havioral properties such as safety, liveness, timeliness,are
expressed in ITL as theorems which can then be validated
and testedcompositionally. These properties include invari-
ants that may be required to be valid before and after the
change is made.

The technique presented here is language independent.
The source code could be in any language (e.g. C, C++, Ada
and COBOL). It is also suitable for concurrent/distributed
legacy systems. The adoption of ITL allows our tech-
nique to be used for the temporal/timing analysis in the re-
engineering process. The technique can also be used to in-
crease comprehension about the system.

The paper is organised as follows. Section 2 introduces
our formal model. Section 3 describes the integrated frame-
work, and Section 4 describes the design and implementa-
tion of the analysing tool AnaTempura. Section 5 is devoted
to several case studies to illustrate the approach and its as-
sociated tool support. We conclude in Section 6 with some
remarks and future work.

2. Preliminaries

2.1. ITL Syntax

Interval Temporal Logic (ITL) is a flexible notation for
both propositional and first order reasoning about periods
of time found in descriptions of hardware and software sys-
tems. It can handle both sequential and parallel composition
unlike most temporal logics. It offers powerful and exten-
sible specification and proof techniques for reasoning about
properties involving safety, liveness and timeliness.

Expressions
e ::= µ | a | A | g(e1, . . . , en) | ıa: f

Formulae
f ::= p(e1, . . . , en) | ¬f | f1 ∧ f2 |

∀v q f | skip | f1 ; f2 | f∗

Figure 1. Syntax of ITL

The syntax of ITL is defined in Fig. 1 whereµ is an in-
teger value,a is a static variable (doesn’t change within an

interval),A is a state variable (can change within an inter-
val), v a static or state variable,g is a function symbol and
p is a predicate symbol. An interval is a sequence of states.

The informal semantics of the most interesting con-
structs are as follows:

• ıa: f : the value ofa such thatf holds.

• skip: unit interval (length 1).

• f1 ; f2: holds if the interval can be decomposed
(“chopped”) into a prefix and suffix interval, such that
f1 holds over the prefix andf2 over the suffix, or if the
interval is infinite andf1 holds for that interval.

• f∗: holds if the interval is decomposable into a finite
number of intervals such that for each of themf holds,
or the interval is infinite and can be decomposed into
an infinite number of finite intervals for whichf holds.

The following are a few examples illustrating ITL:
In an interval, the variable I atsome timeequals 1 and at

some later timeequals 2 can be expressed as:

✸[(I = 1) ∧ ✸(I = 2)]

In an interval, if the variable Ialwaysequals 1 and in the
next state the variable J equals 2 then it follows that the
expression I + J equals 3 in the next state:

|= [✷(I = 1) ∧ ©(J = 2)] ⊃ ©(I + J = 3)

The formula(I +1 → I) ; (I +2 → I) is true in an interval
if and only if that interval can be chopped into two sub-
intervals such that the sub-formulaI + 1 → I is true on the
first subinterval and the sub-formulaI + 2 → I is true on
the second subinterval. The net effect is thatI increases by
3. This is expressed by the following property:

|= [(I + 1 → I) ; (I + 2 → I)] ⊃ (I + 3 → I)

These constructs enables us to define programming con-
structs like assignment, if then else, while loop etc. Ap-
pendix A contains some frequently used abbreviations.

2.2. Types in ITL

Introducing a type system into specification languages
has its advantages and disadvantages. An untyped set theory
is simple and is more flexible than any simple typed formal-
ism. Polymorphism, overloading and sub-typing can make
a type system more powerful but at the cost of increased
complexity. While types serve little purpose in hand proofs,
they do help with mechanised proofs.

There are two basic builtin types in ITL (which can be
given pure set-theoretic definitions). These are integersN
(together with standard relations of inequality and quality)
and Boolean (trueandfalse).



Further types can be built from these by means of× and
the power set operatorP (in a similar fashion as adopted in
the specification language Z).

For example, the following introduces a variablex of
typeT

(∃x : T ) · f =̂ ∃x · (type(T ) ∧ f)

Here type(T ) denotes a formula describing the desired
type. For example,type(T ) could be0 ≤ x ≤ 7 and
so on. Although this might seem to be a rather inexpressive
type system, richer types can be added.

2.3. Tempura

Our choice of ITL in this work is based on the availabil-
ity of an executable subset of the logic. This offers a flexible
and rapid prototyping system, known as Tempura. Its syn-
tax resembles that of ITL. It has as data-structures integers
and booleans and the list construct to built more complex
ones.

The standard operations on expressions are available like
+,−, ∗, /, div, mod, =, >, or, and . The basic statements
(with the corresponding ITL construct) are as follows: (for
more details, we refer the reader to [18]):

ITL Tempura

f1 ∧ f2 f1 and f2

A := exp A := exp

more more
empty empty
✸ sometimes
✷ always
©w wnext
true true
false false
if b then f1 else f2 if b then f1 else f2

while b do f while b do f

repeat b until f repeat b until f

“procedures” define p(e1, . . . , en) = f

“functions” define g(e1, . . . , en) = e

An example is as follows:

define test() = {
exists X,Z : {

if fc>1 then {
prog_send(fc); skip;
{len(fc-2) and Z=0 and
always (input X and check(X,fac(Z))) and
Z gets Z+1 }

} else { prog_send(fc) }
}

}.

Some of the main constructs are used in this example. The
“define” defines the procedure of “test()”. The “exists” op-
erator denotes existential quantification and correspondsto
the introduction of local variables, “X” and “Z”. As used in

normal languages, the notation “if ... then ... else ...” rep-
resents a binary choice. The predicate “skip” specifies an
interval of length one. The “len” construct is used to define
an interval length “(fc-2)”. The statement “Z=0” initialise
the variable “Z”. The operator “and” is used to compose
formulae in parallel. The construct “;” means sequential
composition. The operator “always” causes the statement
“(input X and check(X,fac(Z)))” to be executed on every
state. The “input” is used to read a value externally and
put it to the local variable “X”. The operator “gets” indicate
that the value of “Z” on the next state is always equal to the
value of “Z+1” on the current state. The rest of constructs,
“prog send(fc)” and “check(X,fac(Z))”, are all specially de-
fined functions.

2.4. The Tempura Interpreter

The Tempura interpreter is used to execute the various
constructs of Tempura. Here we just give a brief description
how the interpreter works with help of an example, more
details can be seen in [18].

Towards a Tempura program:

(next next empty) and (I = 0) and

(I gets I + 1) and always (J = 2 ∗ I)

This program is simple enough to make a mental calculation
and come to the conclusion that this is true on intervals of
length 2 in which “I” assumes the value 0, 1 and 2 while
“J” simultaneously assumes the values 0, 2 and 4. One way
to execute such a formula is to transform it to a logically
equivalent conjunction of the two formulaspresent state
andwnext what remains1:

present state and wnext what remains

Here, the formulapresent state consists of assignments to
the program variables and also indicates whether or not the
interval is finished. The formulawhat remains is what
is executed in subsequent states if the interval does indeed
continue on. Thus, it can be viewed as a kind of continu-
ation. For the formula under consideration,present state
has the following value:

(I = 0) and (J = 0) and more.

The value ofwhat remains is the formula:

(next empty) and (I = 1) and (I gets I + 1)
and always (J = 2 ∗ I)

Below we also show the effects of such transformations be-
fore and after each of the three states of the execution.
Before state 0:

(next next empty) and (I = 0) and

(I gets I + 1) and always (J = 2 ∗ I)

1In order for the constructwnext w to be true on an interval, either the
interval is empty or the sub-formulaw is true in the next state



After state 0:

[(I = 0) and (J = 0) and more] and

wnext [(next empty) and (I = 1) and

(I gets I + 1) and always(J = 2 ∗ I)]

Before state 1:

(next empty) and (I = 1) and (I gets I + 1)
and always(J = 2 ∗ I)

After state 1:

[(I = 1) and (J = 2) and more] and

wnext [empty and (I = 2) and

(I gets I + 1) and always(J = 2 ∗ I)]

Before state 2:

empty and (I = 2) and (I gets I + 1)
and always(J = 2 ∗ I)

After state 2:

[(I = 2) and (J = 4) and empty] and

wnext [false and (I gets I + 1)
and always(J = 2 ∗ I)]

3. The Approach

In this section we describe our approach. We begin
by establishing a computational model which is suitable
for modeling legacy system albeit sequential or concurrent,
timed or untimed.

3.1. Computation

We take the view that a computation defines mathemat-
ically an abstract architecture upon which applications will
execute. A legacysystemis a collection ofagents(which is
our unit of computation), possibly executing concurrently
and communicating (a)synchronously via communication
links. Systems can themselves be viewed as single agents
and composed into larger systems. Systems may have tim-
ing constraints imposed at three levels; system wide com-
munication deadlines, agent deadlines and sub-computation
deadlines (within the computation of an individual agent).

At any instant in time a system can be thought of as hav-
ing an uniquestate. The system state is defined by the state
variables of the system and, for concurrent system, by the
values in the communication links, the so calledframe. This
frame defines the variables that can possibly change during
system executing, the variables outside this frame will cer-
tainly not change.Computationis defined as any process
that results in a change of system state. An agent is de-
scribed by a computation which may transform a private
data-space and may read and write to communication links
during execution. The computation may have both mini-
mum and maximum execution times imposed.

A local data-space for the agent is created when an agent
starts execution with initial values which are nondeterminis-
tic. The data-space is destroyed when the agent terminates.
No agent may read or write another agent’s data-space2.

3.2. Behaviours and Properties

An interval is considered to be a (in)finite sequence of
states, where a state is a mapping from the set of variables
to the set of values. The length of an interval is equal to one
less than the number of states in the interval, i.e., a one state
interval has length 0.

A behaviourin our model is defined as a sequence of
states, i.e., an interval in ITL. Hence, a behaviour could be
finite or infinite. A behaviour is calledfull behaviour if it
contains all the state variables of the system otherwise it is
calledpartial. A partial behaviour can be obtained by hid-
ing some state variables (formally it is a projected behaviour
over state variables).

A propertyP can be either astateor temporalITL for-
mula, i.e., a set of behaviours. A general classification of
properties are readily available:safety (something bad does
not happen) and liveness (something good will eventually
happen) property. Another class of properties are known as
temporal/timing(something happens within a duration of,
by or at a certain time deadline).

3.3. Assertion points

A mechanism for managing change in a legacy system
should be practical, systematic and compositional. A fun-
damental issue in our approach is the ability to capture the
behaviour of (sub-)system. Once the behaviour is captured
then we can assert if such behaviour satisfies a given prop-
erty. And as a property is a set of behaviours,satisfaction
is achieved by checking if the captured system’s behaviour
is an element of this set. We are not dealing here with the
formal verification of properties which requires that all pos-
sible behaviours of a system satisfy the properties. The for-
mal verification of these properties may also be performed
using an ITL verifier. We are only concerned with validating
properties which requires that only interesting behaviours
satisfy the properties.

The states of a (sub-)system to be changed are cap-
tured by insertingassertion pointsat suitably chosen places.
These divide the system into severalcode-chunks, as de-
picted in figure 2. Properties of interests are then validated
over this behaviour.

2For concurrent/distributed legacy applications, we assume that an
agent may write to at most a finite number of communication links and
read from at most a finite number of them. Synchronous communication
links, i.e., read and write occur at the same time, are calledchannels. Asyn-
chronous communication links are calledshunts. Shunt writing is destruc-
tive, shunt reading is not.
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Figure 2. Assertion points and Chunks

Our general framework can be systematically described
as follows.

1. Establish all desirable properties of the system under
consideration and express them in Tempura.

2. identify suitable places in the legacy code and insert
assertional points.

3. Using Tempura, check that the behaviour of the legacy
system satisfies the desired properties.

Establishing system properties can be a hard task, however
we suggest to follow the main characterisation of proper-
ties given above, namely safety, liveness and timing prop-
erties. Obviously, some level of understanding of the (sub-
)system under consideration is assumed. These properties
could be invariants that need to be hold true through the
system and/or after the changes are made.

The locations of assertion points could be chosen, for
example, at the entry and exit points of a procedure or func-
tion. In this case assertions are in factpre- andpost-con-
ditions, and what we are asserting is: If the system starts at
a state satisfying thepre- condition then it terminates prop-
erly in a state satisfying thepost-condition.

In addition, assumption/commitmentstyle proper-
ties [29] could be used: For a systemSys the assump-
tion/commitmentstyle can be expressed in ITL as follows:

⊢ w ∧ As ∧ Sys ⊃ Co ∧ fin w
′
.

This states that if the state formulaw is true in the ini-
tial state and the assumptionAs is true over the interval
in whichSys is operating, then the commitmentCo is also
achieved. Furthermore the state formulaw′ is true in the
interval’s final state or is vacuously true if the interval does
not terminate. This is particularly important asAs could be
a formula asserting various assumptions about the environ-
ment in which the system, under consideration, is operating.

If a change occurs in a code chunk, sayC2 in figure 2 to
produceC′2, we are now able to check the ripple effect of
such a change onCi andi 6= 2.

Moreover, we can use theassumption/commitmenttech-
niqueforcingchanges made to have no or a desirable effect
on the neighbouring code chunks. This is depicted in Figure

3 in which a new code chunk is to be inserted atP . The en-
vironment of this new addition, code chunkC, consists of at
leastA′ andB′. The development ofC could be controlled
in a such way that, for exampleA′ = A.

A B

P

......

... ...
A’ B’C

A’ and B’ are the Enviroment of C
A, A’, B, B’ and C are code chunks

Figure 3. Environment

Within our framework we cancompositionallyvalidate
properties. For example the following rule for sequential
composition is sound

⊢ w ∧ As ∧ Sys ⊃ Co ∧ fin w′

⊢ w′
∧ As ∧ Sys ′ ⊃ Co ∧ fin w′′

⊢ w ∧ As ∧ (Sys ;Sys ′) ⊃ Co ∧ fin w′′ .

(1)

Similar rules for iteration and concurrent operators are also
available.

4. Tool Support

We have designed and implemented a tool, known as
AnaTempura, that support the approach described above. In
this section we describe the design and its use via a simple
working example written in C to calculate the factorial. The
text of the program is depicted in Figure 4.

#include <stdio.h>
/* Factorial tester */
main()
{
int y, fac=1;
printf ("Enter the seed: \n");
scanf ("%d", &y);
while (y>0) {
fac=1;
while (y>1) {
fac=fac*y; y=y-1;
printf("PROG: assert fac:d:%d::\n",fac); (*)
}
printf ("Enter the seed: ");
scanf ("%d", &y);

}
printf ("PROG: end ::\n");

}

Figure 4. The C Code of the Factorial



Figures 5 and 6 show the general structure and data flow
of the tool, respectively. There are two main parts: AMoni-
tor and theTempura Interpreter. The Monitor acts as inter-
face between the legacy code and the Tempura Interpreter.

Sequences of valuesRaw Code Chunk
with Assertion-points

Corresponding
ITL/Tempura Code

(Prop.t)

Key:

Tool Component

Data Presentation

Control/Data Flow

   Monitor
Animation Output

Tempura
Interpreter

AnaTempura

Figure 5. Basic Functions
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Figure 6. Control Structure of the Technique

The starting point is formulating, in Tempura, all behav-
ioral properties of interest, such as safety, liveness and time-
liness. these are stored in a Tempura file ( “Prop.t”, Figure
7 in our case). In our working example, the safety property,
i.e. nothing wrong happens, is

always (input X and check(X, fac(Z)))

wherefac(Z) is shown in Figure 7.
The assertion-point has been inserted into the body of

the C code (Marked by “(*)” in Figure 4). In this case,

define fc = 7.
define check(X,Y) = {

if strint(suf(X,6))= Y then {
format("Pass test\n")

} else { format("Fac: Prog %d Real %d\n",
strint(suf(X,6)),Y) }

}.
define fac(K) = {

if K=0 then fc else (fc - K) * fac(K-1)
}.
define test() = {

exists X,Z : {
if fc>1 then {
prog_send(fc); skip;
{len(fc-2) and Z=0 and
always (input X and check(X,fac(Z))) and
Z gets Z+1}

} else { prog_send(fc) }
}

}.

Figure 7. The Tempura Code of the Factorial

we have just one assertion-point corresponding to the only
safety property. This assertion-point will send values of
fac during the computation of the factorial. This sequence
will be the behaviour of the system and for which we check
the satisfaction of our property. The safety property being
checked is that the loop for computing the factorial satisfies
a certain invariant.

This checking is done as follows: start theAnaTempura
and load the Tempura program.AnaTempurawill then start
the corresponding legacy system, in our case the factorial
program (compiled C code chunk with assertion-points).
The legacy system will then generate a behaviour via its as-
sertion points. We then start the Tempura program to check
that this behaviour satisfies the properties. The results of
validating the factorial program are in Figure 8. There is
also an facility to animate the behaviours received from the
legacy system.

Figure 8. Validation Results



We note here that if the properties are not satisfied,
AnaTempura will indicate the errors by displaying what
is expected and what the legacy system actually provides.
Therefore, the approach is not just a “keep-tracking” ap-
proach, i.e. giving the running results of the interesting
properties of the legacy system. By not only capturing the
running results but also comparing them with the formalised
properties, the AnaTempura tool can validate the interesting
properties.

5. Case Study

5.1. Description

The system is used to sort First and Second class letters
and put them into different hoppers as illustrated in the left
hand side of Figure 11. The size of the main controlling
program in C is some 220 lines of code. The size of the to-
tal system is some 2.5K lines of code. A class sensor detects
the different colours of stamps and send corresponding sig-
nals to the control program which in turns sends signals to
the switch (solenoid). The switch will turn the sorting gate
onor off so as to release two classes of letters into different
hoppers.

Delays in the system occur at different places as shown in
the left hand side of Figure 11: Delay 4 (75ms) and Delay
F (250ms) for Solenoid 4 and Letter Sensor respectively;
Delay 3A (75ms) and Delay 3B (75ms) for the Solenoid 33.

The sorter system is required to be extended in such a
way thatAir Mail letters are also sorted.

5.2. The current system

Figure 9. Validation of Sorting 1st/2nd Class

We begin by analysing the current system. Two prop-
erties are of interest: timeliness and safety properties. The

3These variable names come from the original code

Figure 10. Validation of Sorting 2nd Class

former involves the delay times for switching the solenoids
and reading the sensors, whilst the later is thatno Second
class letter drops in the first class hopper and visa versa.
These will have to be validated before the required changes
are made.

These properties are whether the Class and Letter Sen-
sors indicate the correct states of letters and switches
(Solenoid 3 and Solenoid 4), and whether the various time
delays (Delay 4 and Delay F for Solenoid 4 and Letter Sen-
sor, Delay 3A and Delay 3B for Solenoid 3) are correct. We
formulate these properties in Tempura: one property is for
sorting letters into the First class hopper and another is for
sorting letters into the Second class hopper.

Due to the limitation of the space, we have not presented
the whole ITL and Tempura code in this paper. Instead, we
give an example formula which is used to define one of the
main timing properties.

The Class Sensor should detect the class of a letter and
send the corresponding signal to the controller within 75
time units. This unit of computation will be defined as the
following agent.

Cs controller b= [75] Cs check send

where

[t] S b= len = t ∧ (S ; true) ∧ (S ⊃ len ≤ t)

i.e., if checking the class and sending of the signal is less
than 75 time units then we wait till we reached 75 and if it
takes more than 75 time units then generate an error. Each
bit of the controller can be described in such a way.

Two test runs are shown in Figures 9 and 10. AnaTem-
pura runs the program, shown by “run test()” on the top
half of figures. The bottom half of the figures serves as
a terminal to show outputs and inputs of the running pro-
gram. Assertion-points are placed strategically in the code
that are most appropriate to the safety property and to the
timeliness property. In particular, the results of “class:d:1”,



“soloff:d:4” and “solon:d:4” correspond to the safety prop-
erty of the program, i.e., whether a First class can be re-
leased into the First class hopper. Meanwhile, the results of
“wait:d:75” and “wait:d:250” correspond to the timeliness
property, i.e., whether the program can get the signal from
sensors and send control signals to the actuators in time.

The Tempura Interpreter checks the received behaviour
corresponding to the assertion-points of the running pro-
gram, and give appropriate messages like “Pass solenoid
ON test” and “Pass delay test”, which indicate that both the
safety and the timeliness properties are satisfied by the raw
code.

5.3. The new system

The chosen properties of the current system have now
been validated. This gives the maintainer enough confi-
dence to carry out the required changes. (More properties
could be validated to increase assurance.)

In this section, we carry out the required changes to the
system so as to satisfy the new requirements, i.e.,sorting
Air Mail letters. Further we show how such changes affect
the system. What is required is that the new system should
at least satisfy both safety and timeliness properties given
above. In fact the new system will satisfy extra properties.

The new structure can be seen in the right hand side of
Figure 11. A new “Air Mail Sensor” and two new actuators
(Solenoid 6 and Solenoid 5) were added. This has intro-
duced new delays (Delay 5A, Delay 5B and Delay Fa). The
C code has been modified to cater for the new addition.

The observant reader will notice that the structure of the
new system (right hand side of Figure 11) has changed to
cater for the new addition and also make it more efficient:
The Letter Sensor has been moved forwards, i.e., from the
position between Solenoid 4 and Solenoid 3 to the new po-
sition between Solenoid 4 and Solenoid 5.

We have modified the original Tempura code. We have
also added corresponding assertion-points to the newly
added items. Three assertion-points corresponding to the
new sensors and actuators relate to the modified safety prop-
erty, while the three other assertion-points corresponding to
the new delays relate to the timeliness property. Then we
use the same procedure to validate the newly added prop-
erties, i.e., the safety property and timeliness property that
each Air Mail letter should be delivered into the air mail
hopper within a certain time.

We describe the validating process of the new additions.
The results are presented in Figure 12. They indicate that
the safety property has been met for this particular run. The
program has sent correct control signals to the actuators,
Solenoid 4 and Solenoid 5, and all Air Mail letters have
been delivered to the Air Mail Hopper. At the same time,
all timeliness properties have been also satisfied. The delay

times for the sensors and solenoids are correct.

Figure 12. Validation of Sorting Air Mail

6. Conclusion

We have presented a sound and practical approach, based
on a formalism known as Interval Temporal Logic, to man-
age ‘change’ in legacy system. The approach enables the
maintainer to analyse the effect of change. It allows us to
capture a snapshot of system’s behaviour over which vari-
ous interesting properties, such as liveness, timeliness and
safety properties, can be validated compositionally. These
properties could be invariants that are required to be valid
after changes have taken place.

We also presented the supporting tool known as
AnaTempura. The tool was used on a small but illustra-
tive case study of a mail sorter.

Among the first analysers are Anna [22] and
PLEASE [23]. Anna is a language extension of Ada
to include facilities for formally specifying the intended
behaviour of Ada programs. It augments Ada with precise
machine-processable annotations so that well established
formal methods of specification and documentation can
be applied to Ada programs. Like Anna, PLEASE allows
software to be annotated with formulae written in predicate
logic; annotations can be used in proofs of correctness
and to generate run-time assertion checks. As the logic in
PLEASE is restricted to Horn clauses, specifications can
be also transformed into prototypes which use Prolog to
‘execute’ pre- and post-conditions. Anna and PLEASE
however do not deal with timing properties.

We believe that one of the strengths of our approach is
its sound foundation. Interval Temporal Logic (ITL), with
its rich axiomatic system and compositional proof rules,
enables properties of interests to be verified and validated
over an interval of time. The Assumption/Commitment-
style proof rules gives a powerful tool to force changes to
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Figure 11. The Structure of the Original and Modified Mail Sor ter

have eithernoor desirableeffects on the environment of the
system under consideration.

Unlike other tools and techniques,AnaTempura can be
used for both sequential and parallel systems. In addition
the application domains cover both timed and untimed ap-
plications. It is language independent, i.e., it can be usedto
process the legacy code in any language, such as C, C++,
Ada and COBOL.

As future work, we plan to integrate theAnaTempura
with an ITL verifier/Proof Checker, such as Lite [12], which
offers the possibility to verify thatall possiblebehaviours
of the legacy system satisfy a given property. The tool will
ultimately be integrated with the Re-engineering Assistant
(RA) [27]. Currently, we are undertaken larger case studies
from various application domains, including manufacturing
industry and finance. Our experience of this study will be
reported elsewhere.

Establishing assertion points is currently done manually
and relies on a good level of understanding of the system.
We aim to develop mechanisms/guidelines for the establish-
ment and insertion of assertion-points, e.g., the locationand
the number of assertion-points. Also we will use theas-
sumption/commitmenttechnique introduced in section 3.3
to determine our assertion points.

We currently working on visual notation for ITL which
will be incorporated withinAnaTempura. This will en-
hance the acceptability of ITL to non-experts in the specifi-
cation of system properties.
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A. Frequently used abbreviations

next
©f b= skip ; f

wnext
©w f b= ¬©¬f

non-empty interval
more b= ©true

empty interval
empty b= ¬more

infinite interval
inf b= true ; false

finite interval
finite b= ¬inf

sometimes
✸f b= finite ; f

always
✷f b= ¬✸¬f

if then else
if f0 then f1 else f2 b= (f0 ∧ f1) ∨ (¬f0 ∧ f2)

final state
fin f b= ✷(empty ⊃ f)

some subinterval
✸a f b= finite ; f ; true

all subintervals
✷a f b= ¬(✸a ¬f)

all unit subintervals
keepf b= ✷a (skip ⊃ f)

while loop
while f0 do f1 b= (f0 ∧ f1)∗ ∧ fin ¬f0

next value
©exp b= ıa: ©(exp = a)

end value
fin exp b= ıa: fin(exp = a)

assignment
A := exp b= ©A = exp

temporal assignment
exp1 ← exp2 b= finite ∧ (fin exp1) = exp2

gets
exp1 getsexp2 b= keep(exp1 ← exp2)

stability
stable exp b= exp getsexp


