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Abstract. We present a compositional methodology for speci�cation

and proof using Interval Temporal Logic (ITL). After given an intro-

duction to ITL, we show how �xpoints of various ITL operators provide

a exible way to modularly reason about safety and liveness. In addi-

tion, some new techniques are described for compositionally transform-

ing and re�ning ITL speci�cations. We also consider the use of ITL's

programming language subset Tempura as a tool for testing the kinds of

speci�cations dealt with here.

1 Introduction

Modularity is of great importance in computer science. Its desirability in for-

mal methods is evidenced by the growing interest in compositional speci�cation

and proof techniques. Work by us over the last few years has shown that a

powerful generalization of the increasing popular assumption/commitment ap-

proach to compositionality can be naturally embedded in Interval Temporal Logic

(ITL) [12] through the use of temporal �xpoints [14]. Reasoning about safety,

liveness and multiple time granularities are all feasible [15, 17].

In the present paper, we extend our methods to compositional transformation

of speci�cations into other speci�cations. Basically, we show how to sequentially

combine commitments containing speci�cation fragments. The process contin-

ues until we have obtained the desired result. This is useful when verifying, say,

the equivalence of two speci�cations. One sequentially transforms each speci�-

cation into the other. The transformation techniques can also be applied to the

re�nement of relatively abstract speci�cations into more concrete programs.

We also show that various compositional ITL speci�cation and proof tech-

niques have executable variants. An interpreter for ITL's programming-language

subset Tempura [13] serves as a prototype tool. Generally speaking, our approach

represents theorems as Tempura programs annotated with temporal assertions

over periods of time. This can be viewed as a generalization of the use of pre- and

post-conditions as annotations for documenting and run-time checking of con-

ventional sequential programs. Because our assertion language is an executable
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subset of ITL, we can specify and check for behavior over periods of time whereas

conventional assertions are limited to single states.

The remaining sections of the paper are organized as follows. Section 2 gives a

summary of ITL's syntax and semantics. In Sect. 3 we overview compositionality

in ITL. Section 4 looks at compositional reasoning about liveness. Section 5

presents a compositional approach to transformation of speci�cations. Section 6

considers execution of compositional speci�cations. The appendix discusses a

practical ITL axiom system for compositional proofs.

2 Review of Interval Temporal Logic

We now describe Interval Temporal Logic for �nite time. The presentation is

rather brief and the reader should refer to references such as [11, 3, 12, 14] for

more details. In�nite intervals can also be handled by us but for simplicity we

do not consider them until Subsect. 2.1. An ITL proof system is contained in

the appendix.

ITL is a linear-time temporal logic with a discrete model of time. An interval

� in general has a length j�j � 0 and a �nite, nonempty sequence of j�j + 1

states �

0

; : : : ; �

j�j

. Thus the smallest intervals have length 0 and one state. Each

state �

i

for i � j�j maps variables a, b, c, . . . , A, B, C, . . . to data values.

Lower-case variables a, b, c, . . . are called static and do not vary over time. Basic

ITL contains conventional propositional operators such as ^ and �rst-order ones

such as 8 and =. Normally expressions and formulas are evaluated relative to

the beginning of the interval. For example, the formula J = I + 1 is true on an

interval � i� the J 's value in �'s initial state is one more that I 's value in that

state.

There are three primitive temporal operators skip, \;" (chop) and \

�

" (chop-

star). Here is their syntax, assuming that S and T are themselves formulas:

skip S;T S

�

:

The formula skip has no operands and is true on an interval i� the interval has

length 1 (i. e., exactly two states). Both chop and chop-star permit evaluation

within various subintervals. A formula S;T is true on an interval � with states

�

0

; : : : ; �

j�j

i� the interval can be chopped into two sequential parts sharing a

single state �

k

for some k � j�j and in which the subformula S is true on the left

part �

0

; : : : ; �

k

and the subformula T is true on the right part �

k

; : : : ; �

j�j

. For

instance, the formula skip; (J = I+1) is true on an interval � i� � has at least two

states �

0

; �

1

; : : : and J = I+1 is true in the second one �

1

. A formula S

�

is true

on an interval i� the interval can be chopped into zero or more sequential parts

and the subformula S is true on each. An empty interval (one having exactly

one state) trivially satis�es any formula of the form S

�

(including false

�

). The

following sometimes serves as an alternative syntax for S

�

:

chopstarS :
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Figure 1 pictorially illustrates the semantics of skip, chop, and chopstar. Some

simple ITL formulas together with intervals which satisfy them are shown in

Fig. 2. Some further propositional operators de�nable in ITL are shown in Ta-

ble 1.

S

S;T

T

S

�

SSS

skip

Fig. 1. Informal illustration of ITL semantics
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Fig. 2. Some sample ITL formulas and satisfying intervals

We generally use w, w

0

, x, x

0

and so forth to denote state formulas with no

temporal operators in them. Expressions are denoted by e, e

0

and so on.

In [14] we make use of the conventional logical notion of de�nite descrip-

tions of the form {v:S where v is a variable and S is a formula (see for example

Kleene [7, pp. 167{171]). These allow a uniform semantic and axiomatic treat-

ment in ITL of expressions such as



e (e's next value), �n e (e's �nal value)
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Table 1. Some other de�nable propositional ITL operators


w

S

def

� :



:S Weak next

more

def

�



true Nonempty interval

empty

def

� :more Empty interval

3

i

S

def

� S; true Some initial subinterval

2

i

S

def

� :

3

i

:S All initial subintervals

3

a

S

def

� true ;S; true Some subinterval

2

a

S

def

� :

3

a

:S All subintervals

keep S

def

�

2

a

(skip � S) All unit subintervals

�n S

def

�

2

(empty � S) Final state

halt S

def

�

2

(S � empty) Exactly �nal state

and len (the interval's length). For example,



e can be de�ned as follows:



e

def

= {a:



(e = a) ;

where a does not occur freely in e. Here is a way to de�ne temporal assignment

using a �n term:

e e

0

def

� (�n e) = e

0

:

The following operator stable tests whether an expression's value changes:

stable e

def

� 9a:

2

(e = a) ;

where the static variable a is chosen so as not to occur freely in the expression

e. The formula e gets e

0

is true i� in every unit subinterval, the initial value of

the expression e

0

equals the �nal value of the expression e:

e gets e

0

def

� keep (e e

0

) :

An expression is said to be padded i� it is stable except for possibly the last state

in the interval:

padded e

def

� 9a: keep (e = a) ;

where the static variable a does not to occur freely in e. A useful version of

assignment called padded temporal assignment can then be de�ned:

e <� e

0

def

� (�n e) = e

0

^ padded e :

This ensures that e does not change until possibly the very end of the interval

when the assignment takes e�ect. Figure 3 shows examples of these operators.
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K  K + 1

2 6 1 8 3

� � � � �

K gets K + 1

4 5 6 8

� � � � �

7

padded K

3 3 3 3 1

� � � � �

2 2 2 2 3

� � � � �

K <� K + 1

stable K

4 4 4 4 4

� � � � �

K:

K:

K:

K:

K:

Fig. 3. Sample formulas illustrating stable , etc.

2.1 ITL with In�nite Time

The semantics so far presented is suitable for reasoning about �nite intervals.

We now discuss some modi�cations needed to permit in�nite intervals as well.

First, we apply our semantics of S;T and S

�

to in�nite intervals. As before,

S;T is true on an interval if the interval can be divided into one part for S and

another adjacent part for T and that S

�

is true if the interval can be divided

into a �nite number of parts, each satisfying S. In addition, we now also let S;T

be true on an in�nite interval which satis�es S. For such an interval, we can

ignore T . Furthermore, we let S

�

be true on an in�nite interval that is divisible

into a �nite number of subintervals where the last one has in�nite length and

each satis�es S or alternatively into an in�nite number of �nite intervals each

satisfying S. We de�ne new constructs for testing whether an interval is in�nite

or �nite, and alter the de�nition of

3

:

inf

def

� true; false �nite

def

� :inf

3

S

def

� �nite;S s�n S

def

�

3

(empty ^ S) :

Here s�n S is a strong version of �n S and is true only on �nite intervals. In

contrast, �n S is vacuously true on all in�nite intervals. The �rst-order operators

for temporal assignment and padded temporal assignment are rede�ned to deal

with both �nite and in�nite intervals:

e e

0

def

� �nite � (�n e) = e

0

;

e <� e

0

def

� �nite ^ (�n e) = e

0

^ padded e :

Our experience seems to suggest that it is preferable to de�ne e  e

0

to be

vacuously true on in�nite intervals and to de�ne e <� e

0

to be false on them.
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3 Introduction to Compositionality in ITL

Modularity is a desirable attribute of any formal method. One of the best known

modular logical notations is Hoare logic [4]. It uses the important insight that

proofs about the pre/post-condition behavior of a sequential program can be

decomposed into subproofs of the program's parts. In ITL we can express a

Hoare clause as a theorem about discrete intervals of time consisting of one or

more states:

` w ^ Sys � �n w

0

:

Here w and w

0

are state formulas containing no temporal operators and Sys is

some arbitrary temporal formula we wish to reason about. The temporal formula

�n w

0

is true on an interval i� w

0

is true in the interval's �nal state.

The pre/post-condition approach is not particularly well suited for specify-

ing and verifying systems in which ongoing and parallel behavior are important.

However, this can be remedied through the addition of what are commonly

known as assumptions and commitments. Francez and Pnueli [2] are the �rst to

consider them and refer to them as interface predicates . The following implica-

tion shows the basic form of an ITL theorem incorporating an assumption As

and a commitment Co:

w ^ As ^ Sys � Co ^ �n w

0

:

Table 2 briey describes the role of each logical variable in such an implication.

This can be seen as an embedding of Jones' rely and guarantee conditions [5]

in ITL. In Fig. 4, we show a graphical representation of the implication called a

proof outline.

Table 2. Compositional speci�cation of system Sys

w ^ As ^ Sys � Co ^ �n w

0

,

where:

w: state formula about initial state,

As : assumption about overall interval,

Sys : the system under consideration,

Co: commitment about overall interval,

w

0

: state formula about �nal state.

In general As and Co can be arbitrary temporal formulas. However, when

compositional reasoning about sequential parts of a system is needed, it is useful

to select assumptions and commitments for which the following derived ITL

proof rule is sound:

` w ^ As ^ Sys � Co ^ �n w

0

;

` w

0

^ As ^ Sys

0

� Co ^ �n w

00

` w ^ As ^ (Sys ;Sys

0

) � Co ^ �n w

00

:

(1)
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As

fwg

Sys

fw

0

g

Co

Fig. 4. Proof outline for speci�cation Sys

The rule uses the ITL operator chop to combine the formulas Sys and Sys

0

sequentially. An associated proof outline is shown in Fig. 5. Here is an analogous

rule for decomposing a proof for zero or more iterations of a formula Sys :

` w ^ As ^ Sys � Co ^ �n w

` w ^ As ^ Sys

�

� Co ^ �n w :

(2)

Figure 6 shows a corresponding proof outline. Similar rules are possible for if,

while and other constructs.

As

As

fwg

Sys

fw

0

g

Co

As

Sys

0

fw

00

g

Co

Co

Fig. 5. Proof outline for speci�cation Sys ; Sys

0

As

fwg

chopstar (

As

fwg

Sys

fwg

Co

)

fwg

Co

Fig. 6. Proof outline for speci�cation Sys

�

To ensure soundness of proof rules 1 and 2, we require that As and Co be

respective �xpoints of the ITL operators

2

a

and chop-star as is now shown:

As �

2

a

As ; Co � Co

�

:

The �rst equivalence ensures that if the assumption As is true on an interval,

it is also true in all subintervals. We say that such an assumption is importable.
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The second equivalence ensures that if zero or more sequential instances of the

commitment Co span an interval, Co is also true on the interval itself. A com-

mitment with this property is said to be exportable. Importable assumptions

and exportable commitments are collectively referred to as sequentially compo-

sitional . The temporal formula

2

(I = 1) (read \I always equals 1") is a typical

importable assumption. An example of its behavior can be pictorially represented

as follows:

2

(I = 1)

2

(I = 1)

2

(I = 1)

2

(I = 1)

2

(I = 1)

2

(I = 1)

2

(I = 1)

2

(I = 1)

2

(I = 1)

2

(I = 1)

111I:

2

(I = 1)

� � � �

1

The set of importable assumptions turns out to consist exactly of those formulas

expressible as

2

a

S for some arbitrary subformula S. The temporal formula A 

A (\A's initial and �nal values on the interval are equal") is an exportable

commitment. Here is an interval illustrating this:

A A

A: 4 2 1 4 4 3 2 4

A A A AA A

� � � � � � � �

One can show that a formula is an exportable commitment if and only if it

can be expressed in the form S

�

for some arbitrary S. Some formulas such as

stable K (\K's value remains the same throughout the interval") can be used

both as assumptions and commitments. These are precisely the �xpoints of the

ITL operator keep de�ned earlier in Table 1. We recall that formula keep S, for

some subformula S, is de�ned to be true on an interval i� S is true on every

unit subinterval (i.e., consisting of exactly two adjacent states):

keep S

def

�

2

a

(skip � S) :

Here is a graphical representation of the semantics of a formula keep S on a

typical interval:

S S

keep S

S S S S S S
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The formula keep (K  K+1) is an example of such a �xpoint. It states that K

increases by 1 between every pair of adjacent states. In Fig. 7 we show a proof

outline for the following lemma:

` J = 1 ^ stable J ^ (stable K;K <� K + J)

� keep (K �



K � K + 1) ^ �n (J = 1) :

(3)

stable J

stable J

fJ = 1g

stable K

fJ = 1g

Co

stable J

K <� K + J

fJ = 1g

Co

Co

where Co is keep (K �



K � K + 1).

Fig. 7. Proof outline for lemma (3).

Note that our approach only requires that assumptions and commitments

which are used directly in rules such (1) and (2) are sequentially compositional.

Compositional proofs about a system in ITL typically also involve reasoning

about assumptions and commitments which are not sequentially compositional.

For instance, there is an important class of formulas using the standard temporal

operator

2

. In general they can neither be used directly as sequentially compo-

sitional assumptions or commitments. Nevertheless, those of the form

2

w, for

some state formula w, can be used as importable assumptions since they are

�xpoints of the operator

2

a

:

`

2

w �

2

a

2

w :

Unfortunately, even these cannot be used as exportable commitments since, for

example, the formula (

2

w)

�

(and indeed any formula S

�

) is vacuously true on

intervals having exactly one state whereas

2

w is not necessarily true on them. In

other words (

2

w)

�

^ :

2

w is satis�able for some w and therefore

2

w � (

2

w)

�

is normally not a theorem. However, there are simple ways around this. For

instance, we can express

2

w as the conjunction of keep w and �n w:

`

2

w � keep w ^ �n w :

Since w is a state formula, keep w turns out to be true on an interval i� w is

true on all of the interval's states except possibly the last one. Since we already

mentioned that keep S for any formula S is a perfectly good exportable commit-

ment, we can use keep w in compositional proofs and at the very end combine

it with �n w to obtain the desired (generally nonexportable) commitment

2

w.
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4 Compositional Analysis of Liveness

The techniques so far presented do not address reasoning about formulas involv-

ing liveness such as

23

x and

2

(x �

3

x

0

); where x and x

0

are state formulas.

We now briey discuss how to handle such temporal formulas in compositional

proofs. More details and examples of proofs can be found in [17]. Let us now use

the temporal operator

2

m

(\box-m" or \mostly") de�ned as follows:

2

m

S

def

�

2

(more � S) :

A formula

2

m

S is true on an interval i� the subformula S is true on all terminal

(su�x) subintervals with more than one state, that is all the interval's nonempty

terminal subintervals. Therefore

2

m

ignores the last (empty) terminal subinterval

consisting of one state and is slightly weaker than

2

. In Fig. 8 we illustrate

the di�erence between the two operators. On in�nite intervals, their behavior is

identical.

2

S

S

S

S

S

S S

S

S

S

2

m

S

Fig. 8. Comparison of

2

S with

2

m

S

It turns out that for any state formulas w and w

0

and an arbitrary formula

S, the formula

2

m

(w � S;w

0

) is a �xpoint of chop-star :

`

2

m

(w � S;w

0

) �

�

2

m

(w � S;w

0

)

�

�

:

This is because

2

m

(w � S;w

0

) can be expressed as

2

m

3

i

�

w � (S ^ �n w

0

)

�

and

any formula of the form

2

m

3

i

T for some arbitrary formula T is a �xpoint of

chop-star.

For state formulas x and x

0

, the implication x �

3

x

0

can be expressed as

x � �nite;x

0

. Consequently, the formula

2

m

(x �

3

x

0

) is a �xpoint of chop-

star. Table 3 gives examples of exportable commitments expressible in the form

2

m

(x � S;x

0

) for suitable x, x

0

and S.

One way to prove a formula

2

(x �

3

x

0

), is by establishing the related for-

mula

2

m

(x �

3

x

0

) through sequential composition and also showing the formula
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Table 3. Examples of formulas expressible as

2

m

(x � S;x

0

)

2

m

x

2

m

3

x

2

m

(x �

3

x

0

)

2

m

3

i

(skip ^ S) (same as keep S)

�n (x �

3

x

0

). We then use the following lemma relating

2

with

2

m

and �n :

`

2

S �

2

m

S ^ �n S :

The �xpoints of the ITL operator

3

a

(read \diamond-a") are important when

we reason about liveness. In general,

3

a

S is true on an interval i� S is true on

some subinterval (possibly the interval itself). Formulas such as

3

x, where x is

a state formula, and : stable A (meaning \The variable A has more than one

value over the interval") are �xpoints of

3

a

. If DA is a �xpoint of

3

a

,

2

m

DA is a

�xpoint of chop-star and hence an exportable commitment. More generally, for

any state formula x and

3

a

-�xpoint DA, a formula of the form

2

m

(x � DA) is

always a �xpoint of chop-star. This is because

2

m

(x � DA) can be expressed as

2

m

(x � DA; true). The �xpoints of

3

a

are closed under disjunction.

Let us consider another bene�t of �xpoints of

3

a

. Suppose one wishes to

prove that a formula Sys ;Sys

0

with a suitable precondition and an importable

assumption implies a commitment

2

m

(x � DA) for some state formula x and

some �xpoint DA of

3

a

. The most straightforward thing to do is to �rst show

the commitment both for Sys and Sys

0

and then combine the results using proof

rule (1). However, this is not always possible since DA might never be true in

Sys and only occur in Sys

0

even though x is perhaps somewhere true in Sys. In

such cases, we can use the following derivable proof rule for all intervals, both

�nite and in�nite:

` w ^ As ^ Sys � �nite ^ �n w

0

;

` w

0

^ As ^ Sys

0

�

2

m

(x � DA) ^ DA ^ �n w

00

` w ^ As ^ (Sys ;Sys

0

) �

2

m

(x � DA) ^ DA ^ �n w

00

:

(4)

This shows that the only thing we need to verify about Sys is that it terminates

with the formula w

0

true in its �nal state. Both the desired commitment

2

m

(x �

DA) and DA itself can be obtained for Sys;Sys

0

from Sys

0

alone because DA is

a �xpoint of

3

a

. A proof outline for this is given in Fig. 9.

Figure 10 shows a proof outline for the following lemma in which the variable

K is never stable, except trivially in the last state (if the overall interval is �nite):

` J � 1 ^ keep (J �



J) ^

�

(stable K ^ �nite);K <� K + J

�

�

2

m

: stable K ^ : stable K ^ �n (J � 1) :

(5)

11



As

As

fwg

Sys

fw

0

g

�nite

As

Sys

0

fw

00

g

2

m

(x � DA) ^ DA

2

m

(x � DA) ^ DA

Fig. 9. A proof outline for rule (4)

keep (J �



J)

keep (J �



J)

fJ � 1g

stable K ^ �nite

fJ � 1g

�nite

keep (J �



J)

K <� K + J

fJ � 1g

2

m

: stable K

^ : stable K

2

m

: stable K

^ : stable K

Fig. 10. Proof outline for lemma (5).

Sometimes a more powerful technique for analyzing reachability is needed.

We originally introduced the notion of markers in [11, p. 127]. A marker is a

boolean state variable, called here Mk , which is true exactly at the start and

end of loop iterations. For example, a variant of chop-star having a marker can

be de�ned as follows:

chopstar

Mk

S

def

� (S ^



halt Mk )

�

:

Without loss of generality, we can always existentially introduce a marker as an

auxiliary variable. The following provable lemma states this:

` S

�

� 9Mk : (Mk ^ chopstar

Mk

S) ;

where Mk does not occur freely in the formula S. The use of markers in liveness

proofs is discussed in more detail in [17].

5 Compositional Transformation of Speci�cations

Assumptions and commitments are usually thought of as being simpler than

the systems they describe. However in ITL it is possible to embed arbitrary

formulas in them. This provides a framework for compositional transformation

and re�nement of speci�cations. For example, we can specify that one system

Sys implies that whenever some state formula x is true, the behavior of another

system Sys

0

is observed followed by another state formula x

0

being true:

w ^ As ^ Sys �

2

(x � Sys

0

;x

0

) ^ �n w

0

:

The use of formulas of the form

2

(x � S;x

0

) provides a powerful means for

decomposition. For example, suppose we wish to establish the following commit-

ment which embeds S;S

0

:

2

(x � S;S

0

;x

0

) :

12



This can be split into two smaller commitments for S and S

0

using the general

ITL theorem shown below:

`

2

(x � S; y) ^

2

(y � S

0

;x

0

) �

2

(x � S;S

0

;x

0

) : (6)

Here we introduce a new state formula y to connect the two individual commit-

ments. A similar decomposition theorem can be used for while-loops which are

themselves expressible in ITL as follows:

while w do S

def

� (w ^ S)

�

^ �n :w :

A commitment with an embedded while-loop has the following form:

2

�

x � (while w do S);x

0

�

:

It can be broken down using the theorem now given:

`

2

�

x ^ w � (S ^ more);x

�

^

2

�

x ^ :w � x

0

)

�

2

�

x � (while w do Sys);x

0

�

:

The formula x serves as the while-loop's invariant. Here is a corollary of this for

introducing a while-loop itself:

`

2

�

x ^ w � (S ^ more);x

�

^

2

�

x ^ :w � empty)

� x � (while w do Sys) ^ �n (x ^ :w) :

(7)

Sometimes, we wish to prove that one system implies another:

w ^ As ^ Sys � Sys

0

^ �n w

0

:

This can be thought of as stating the existence of a transformation from Sys to

Sys

0

. If we have already compositionally demonstrated a commitment

2

(x �

S;x

0

), we can obtain S from it through the next theorem:

` x ^

2

(x � S;x

0

) ^

2

(x

0

� empty) � S :

A commitment expressed as

2

(x � S;x

0

) is in general not exportable. How-

ever, we noted in Sect. 4 that a formula such as

2

m

(x � S;x

0

) when used as a

commitment is exportable since it is always a �xpoint of chop-star. This greatly

facilitates modular proofs since we obtain the bene�ts of sequential composition-

ality. The following lemmas assist in moving between the two types of commit-

ments:

`

2

(x � S;x

0

) �

2

m

(x � S;x

0

)

`

2

m

(x � S;x

0

) ^ �n :x �

2

(x � S;x

0

) :

The subformula �n :x in the second lemma ensures that the implication x �

S;x

0

is trivially true in the interval's �nal state if the interval is �nite.
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5.1 An Example

Figure 11 shows two logically equivalent speci�cations p1 (K;n) and p2 (K;n)

which monotonically increase a variableK until it equals 2n. Here is the behavior

of K and n in a sample interval having 12 states:

� � � � � � � � � � � �

655543222100

3 3 3 3 3 3 3 3 3 3 3 3

K:

n:

p1 (K;n): whileK 6= 2n do (K <� K + 1)

p2 (K;n): halt (K = 2n)

^

�

K <� K + 1; halt even(K)

�

�

^

�

halt odd(K);K <� K + 1

�

�

Fig. 11. Two equivalent speci�cations

We will consider how to establish equivalence when K is initially even. This

can be reduced to proving the following two implications:

` even(K) ^ p1 (K;n) � p2 (K;n) (8)

` even(K) ^ p2 (K;n) � p1 (K;n) : (9)

Each of these is analyzed individually.

Proof of even(K) ^ p1(K;n) � p2(K;n). In order to prove lemma (8),

we give names to p2 's conjuncts as shown in Table 4 and prove the following

lemmas which demonstrate that p1 implies each of them:

` even(K) ^ p1 (K;n) � p2a(K;n) (10)

` even(K) ^ p1 (K;n) � p2b(K) (11)

` even(K) ^ p1 (K;n) � p2c(K) : (12)

The simplest of the three lemmas is the �rst one (10). A proof outline is

shown in Fig. 12. It uses the following equivalence for the halt construct:

` halt w �

2

m

:w ^ �n w : (13)

The proofs of lemma (11) for p2b and lemma (12) for p2c are similar to each

other so we only look at the one for p2b. The lemma's proof uses an auxiliary

boolean state variable X which is acts as follows:

X ^ X gets (K 6=



K) :
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Table 4. Decomposition of speci�cation p2 (K;n)

p2 (K;n): p2a(K;n) ^ p2b(K) ^ p2c(K)

p2a(K;n): halt (K = 2n)

p2b(K):

�

K <� K + 1; halt even(K)

�

�

p2c(K):

�

halt odd(K);K <� K + 1

�

�

ftrueg

whileK 6= 2n do (

fK 6= 2ng

K <� K + 1

ftrueg

2

m

K 6= 2n

)

fK = 2ng

2

m

K 6= 2n

2

m

K 6= 2n

^ �n (K = 2n)

halt (K = 2n)

Fig. 12. Proof outline for lemma (10).

It is initially true and subsequently is true exactly whenever K's value changes.

We can introduce X without loss of generality using existential quanti�cation.

Here is the behavior of K and X in the interval described earlier:

0

true

K:

X:

�

65554322210

truefalsefalsetruetruetruefalsefalsetruetruefalse

�����������

The subformula X gets (K 6=



K) is used as an importable assumption in the

proofs for p2b.

The outermost operator used in p2b is chop-star. The following general theo-

rem provides a way to introduce a formula S

�

from a commitment which embeds

S in it:

x ^

2

m

�

x � (S ^ more);x

�

� S

�

:

In the case of p2b, we use X ^ even(K) as an instance of x and take the following

as an instance of

2

m

�

x � (S ^ more);x

�

:

2

m

�

X ^ even(K) �

�

(K <� K + 1; halt even(K)) ^ more

�

;

�

X ^ even(K)

�

�

:

This can be further split into two commitments using a variant of lemma (6)

given below for sequentially decomposing loop bodies:

`

2

m

�

x � (S ^ more);x

0

�

^

2

(x

0

� S

0

;x

00

)

�

2

m

�

x � ((S;S

0

) ^ more);x

00

�

:
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One commitment is for K <� K + 1 ^ more and the other is for halt even(K):

2

m

�

X ^ even(K) �

(K <� K + 1 ^ more);

�

X ^ odd(K)

�

�

2

�

X ^ odd(K) �

halt even(K);

�

X ^ even(K)

�

�

:

The associated lemmas are now given:

` even(K) ^ X ^ X gets (K 6=



K) ^ P1 (K;n)

�

2

m

�

X ^ even(K) �

(K <� K + 1 ^ more);

�

X ^ odd (K)

�

�

(14)

` even(K) ^ X ^ X gets (K 6=



K) ^ P1 (K;n)

�

2

�

X ^ odd (K) �

halt even(K);

�

X ^ even(K)

�

�

:

(15)

Proof outlines for these are shown in Figs. 13 and 14, respectively. Figure 15

summarizes the overall proof of lemma (11).

As

fXg

whileK 6= 2n do (

As

fX ^ K 6= 2ng

K <� K + 1

fXg

even(K) �

(K <� K + 1 ^ more);

�

X ^ odd(K)

�

^


w

2

m

:X

Co

)

fXg

Co

where As is X gets (K 6=



K)

and Co is

2

m

�

X ^ even(K) �

(K <� K + 1 ^ more);

�

X ^ odd(K)

�

�

:

Fig. 13. Proof outline for lemma (14).

Proof of even(K) ^ p2(K;n) � p1(K;n). In order to obtain p1 (K;n)

from p2 (K;n), we �rst use the fact that p1 (K;n) is expressed as a while-loop

and can therefore be decomposed using the lemma now given which is provable

from corollary (7):

` halt :w ^ S

�

� while w do S : (16)
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As

fXg

while K 6= 2n do (

As

fX ^ K 6= 2ng

K <� K + 1

fXg

odd(K) �

halt even(K);

�

X ^ even(K)

�

^



w

2

m

:X

Co

)

fX ^ K = 2ng

Co

^ �n :odd (K)

Co

0

where As is X gets (K 6=



K) ,

Co is

2

m

�

X ^ odd(K) �

halt even(K);

�

X ^ even(K)

�

�

and Co

0

is

2

�

X ^ odd(K) �

halt even(K);

�

X ^ even(K)

�

�

:

Fig. 14. Proof outline for lemma (15).

even(K) ^ X ^ X gets (K 6=



K) ^ p1 (K;n)

a: �

2

m

�

X ^ even(K) �

(K <� K + 1 ^ more);

(X ^ odd(K))

�

V

2

�

X ^ odd(K) �

halt even(K);

(X ^ even(K))

�

b: �

2

m

�

X ^ even(K) �

�

(K <� K + 1; halt even(K)) ^ more

�

;

�

X ^ even(K)

�

�

c: �

X ^ even(K) �

�

K <� K + 1; halt even(K)

�

�

Fig. 15. Overview of proof of lemma (8)
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Here is the particular instance of this that we need to show:

` halt :(K 6= 2n) ^ (K <� K + 1)

�

� while K 6= 2n do (K <� K + 1) :

The antecedent of this can be obtained from p2 (K;n) in the following manner:

` even(K) ^ p2 (K;n) � halt :(K 6= 2n) ^ (K <� K + 1)

�

: (17)

The main work in proving lemma (17) involves obtaining (K <� K + 1)

�

:

` even(K) ^ p2 (K;n) � (K <� K + 1)

�

: (18)

As done previously, we use an auxiliary variable X which is initially true and

subsequently is true exactly whenever K's value changes. Figure 16 summarizes

the overall proof of lemma (18).

even(K) ^ X ^ X gets (K 6=



K)

^ p2b(K)

even(K) ^ X ^ X gets (K 6=



K)

^ p2c(K)

� �

2

m

�

X ^ even(K) �

(K <� K + 1 ^ more);X

�

V

2

m

�

X ^ odd(K) �

(K <� K + 1 ^ more);X

�

�

2

m

�

X � (K <� K + 1 ^ more);X

�

�

X � (K <� K + 1)

�

Fig. 16. Overview of proof of lemma (18)

A proof outline for the following lemma about p2b(K) is shown in Fig. 17.

` even(K) ^ X ^ X gets (K 6=



K) ^ p2b(K)

�

2

m

�

X ^ even(K) � (K <� K + 1 ^ more);X

�

:

(19)

6 Executable Compositional Speci�cations

The Tempura programming language [13] is based on an executable subset of

ITL. With some care, many interesting ITL speci�cations can be directly run by

a Tempura interpreter. This consequently provides a valuable tool for \hands-on"

access to ITL. It appears to be worthwhile to explore ways of exploiting Tempura
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As

fX ^ even(K)g

chopstar (

As

As

fX ^ even(K)g

K <� K + 1

fodd(K)g

even(K) �

(K <� K + 1 ^ more);X

^



w

2

m

:X

Co

As

halt even(K)

fX ^ even(K)g

2

m

odd (K) Co

Co

)

fX ^ even(K)g

Co

where As is X gets (K 6=



K)

and Co is

2

m

�

X ^ even(K) � (K <� K + 1 ^ more);X

�

.

Fig. 17. Proof outline for lemma (19).

for testing executable speci�cations which have assumptions and commitments

in them. At present we are experimenting with various Tempura programming

styles and interpreter implementation techniques to improve facilities for carry-

ing this out. For instance, consider the following simple Tempura conjunction:

K= 0 ^ p1 (K; 3) ^ p2 (K; 3) ^

2

output(K) : (20)

This initializes the variable K to 0 and runs p1 (K; 3) and p2 (K; 3) in parallel

on a state-by-state basis. Furthermore, the value of K in each state is displayed.

Figure 18 shows a typical run. The construct K <� K + 1 is nondeterminis-

tic since it does not specifying any particular interval length. The interpreter

therefore generates a pseudo-random value in some user-adjustable range. We

note that the Tempura source code for p1 and p2 is annotated with many of as-

sumptions and commitments described earlier in various proofs in Subsect. 5.1.

Therefore the run shown in Fig. 18 also extensively checks them.

Now consider the following general ITL formula containing an assumption

and a commitment:

w ^ As ^ Sys � Co ^ �n w

0

:

This can sometimes be tested in Tempura for inconsistencies using the following

conjunction:

w ^ As ^ Sys ^ Co ^ �n w

0

:

Of course, it is not feasible to attempt to execute arbitrary assumptions and

commitments. Here are two reasons why:

{ They can contain arbitrary undecidable �rst-order ITL subformulas.

{ Satis�ability can be nonelementary even for decidable propositional ITL for-

mulas (Kozen in [11, p. 24]).

However, there are interesting and useful classes. For example, Table 5 shows

various importable assumptions which can be tested. Similarly, Table 6 contains
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Tempura 4> run (K=0 and p1(K,3) and p2(K,3) and always output(K)).

State 0: K=0

State 1: K=0

State 2: K=0

State 3: K=1

State 4: K=1

State 5: K=2

State 6: K=2

State 7: K=2

State 8: K=3

State 9: K=3

State 10: K=4

State 11: K=5

State 12: K=5

State 13: K=5

State 14: K=6

Done! Computation length: 14. Total Passes: 40.

Fig. 18. Sample Tempura output for formula (20)

a number of checkable exportable commitments. Indeed, we discovered that for-

mulas having the form

2

m

(w � S;w

0

) were suitable as exportable commitments

only after we tried to prove compositionally the equivalence of some experimen-

tal Tempura speci�cations. Many assumptions and commitments which are not

sequentially compositional can also be handled by Tempura. Examples include

commitments of the form

2

(w � S;w

0

) as long as w, S and w

0

are themselves

executable. We are even investigating ways of implementing negation of suitable

Tempura programs. This would permit empirical testing of the validity of an

implication of the form Sys � Sys

0

by examining satis�ability of a program

such as Sys ^ :Sys

0

.

Table 5. Some executable importable assumptions

stable A A's value remains stable

keep (K �



K � K + 1) K's value weakly increases

monotonically

2

(K = 0) K always equals 0

23

(K = 1 _ empty) Always eventually either K equals 1

or the interval terminates
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Table 6. Some executable exportable commitments

stable A A's value remains stable

keep (K �



K � K + 1) K's value weakly increases

monotonically

2

m

(K = 0) K's value is mostly zero

2

m

3

K = 1 K's value is mostly sometimes 1

2

m

(K = j �

3

K = j + 1) Mostly when K = j,

eventually K = j + 1

2

m

9i:

�

i = A ^

3

(A 6= i)

�

A is mostly not stable

2

m

(w � S;w

0

) Mostly w implies S then w

0

Let us now enumerate some bene�ts of using Tempura for testing composi-

tional speci�cations:

{ Tempura o�ers a \learning-by-doing" approach to ITL.

{ Larger ITL speci�cations can be developed and tested than with pencil and

paper alone.

{ Modular, reusable Tempura test suites can be developed.

{ Several speci�cations can be compared over a range of test data.

{ The use of specialized theorem provers and model checkers can be postponed

until after a preliminary run-time consistency check of candidate speci�ca-

tions and proofs.

{ In contrast to model checking, execution can be used to test theorems which

are not decidable.

{ ITL and Tempura both improve through the increased feedback between

theory and practice. Particular bene�ts are:

� The discovery of further executable assumptions and commitments.

� The development of more and better compositional proof techniques.

{ Interval Temporal Logic serves as the single unifying formalization at all

stages of analysis.

Of course, we do not realistically expect the use of an interpreter to replace

theorem provers and model checkers. However, this does seem to be an intriguing

alternative suitable in various circumstances. For example, we already mentioned

that the compositional equivalence proofs discussed in this paper have been

partially checked using a Tempura interpreter. We have also been able to do a

run-time parallel check of seven di�erent ITL speci�cations for doing a breadth-

�rst walk down a tree. The speci�cations range from a register-transfer level

description to a somewhat object-oriented approach based on parallel recursive

decent by several processes. Furthermore, we checked some safety and liveness

proofs for mutual exclusion presented in [17]. As time goes on, we hope to obtain

more experience with the advantages and limitations of using Tempura for run-

time checking of ITL assertions.
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7 Discussions

We have presented the basis of a compositional methodology of speci�cation and

proof using �xpoints of various ITL operators. Issues considered include reason-

ing about safety, liveness and even equivalence of speci�cations. Our current

work has identi�ed an interesting class of commitments which can be used for

compositional transformation and re�nement of speci�cations. The exploitation

of executable speci�cations based on ITL's programming language subset Tem-

pura helps to accelerate development of both the underlying theory as well as

practical tool support.

Much work remains to be done. We need to conduct larger case studies using

by ITL and Tempura to ensure scalability of the techniques. Also, at present

there is little experience with using compositionality in ITL together with a

frame semantics for imperative destructive assignments developed by us in [16].

Furthermore, programming with Tempura has some di�culties. In particular,

support for debugging of parallel programs needs improvement.
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Appendix A Practical Proof System for ITL

In this appendix, we present a very powerful and practical compositional proof

system for ITL. Our experience in rigorously developing hundreds of proposi-

tional and �rst-order proofs has helped us re�ne the axioms and convinced us

they are su�cient for a very wide range of purposes. See Moszkowski [14] for

more about this. The proof system is divided into a propositional part and a

�rst-order part. Our discussion looks at each in turn.

Propositional Axioms and Inference Rules. The propositional axioms and

inference rules mainly deal with chop, and skip and operators derived from them.

Only one axiom is needed for chop-star. The proof system gives nearly equal

treatment to initial and terminal subintervals. This is exceedingly important for

the kinds of proofs we do. In addition, this makes the proof system easier to

understand since much of it consists simply of duals in this sense. In contrast,
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most temporal logics cannot handle initial subintervals and even other proof

systems for ITL largely neglect them.

Rosner and Pnueli [19] and Paech [18] give propositional proof systems for

ITL with in�nite intervals and prove completeness. However, neither system has

ever been used much. More recently, Kesten and Pnueli [6] were able to prove

the completeness of a very nice proof system for Quanti�ed Propositional Tem-

poral Logic (QPTL) using B�uchi Automata. Perhaps a similar technique can be

applied to propositional ITL with in�nite time since it has the same expres-

siveness as QPTL and can even be translated into it as shown by Halpern and

Moszkowski in [11, pp. 23{24]. Our proof system presented here contains some of

the propositional axioms suggested by Rosner and Pnueli but also includes our

own axioms and inference rule for the operators

2

i

, halt , and chop-star. These

assist in deducing propositional and �rst-order theorems and in deriving rules

for importing, exporting and other important aspects of composition.

Prop ` Substitutions of tautologies

P2 ` (S;T );U � S; (T ;U)

P3 ` (S _ S

0

);T � (S;T ) _ (S

0

;T )

P4 ` S; (T _ T

0

) � (S;T ) _ (S;T

0

)

P5 ` empty ;S � S

P6 ` S; empty � S

P7 ` w �

2

i

w

P8 `

2

i

(S � S

0

) ^

2

(T � T

0

) � (S;T ) � (S

0

;T

0

)

P9 `



S � :



:S

P10 `

3

i

�

(



halt w) ^ S

�

�

2

i

�

(



halt w) � S

�

P11 ` S ^

2

(S �



w

S) �

2

S

P12 ` S

�

� empty _ (S ^ more);S

�

MP ` S � T; ` S ) ` T

2

Gen ` S ) `

2

S

2

i

Gen ` S ) `

2

i

S

We now give a sample theorem and its proof:

`

2

i

(S � T ) �

3

i

S �

3

i

T :

Proof:

1 ` true � true Prop

2 `

2

(true � true) 1,

2

Gen

3 `

2

i

(S � T ) ^

2

(true � true) P8

` � (S; true) � (T ; true)

4 `

2

i

(S � T ) � (S; true) � (T ; true) 2,3,Prop

5 `

2

i

(S � T ) �

3

i

S �

3

i

T 4,def. of

3

i

Theorem A. The propositional proof system is complete for quanti�er-free for-

mulas containing only boolean-valued static and state variables.
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Outline of proof: For a given formula, we construct a �nite tableau consisting

of a number of states. Each state is represented as a disjunction whose disjuncts

are themselves conjunctions of primitive propositions, next formulas and their

negations. Now suppose S is a valid formula. Construct a tableau for its negation

:S. Call a state in a tableau �nal if it is satis�able by some empty interval.

No state reachable from the initial state in our tableau for :S is �nal, since

otherwise we can use the path to construct a model for :S. Therefore the tableau

reects that :S is not true in any �nite intervals. We convert this to a proof-

by-contradiction for S. This technique also applies to a version of Rosner and

Pnueli's proof system restricted to �nite intervals.

First-Order Axioms and Inference Rules. Below are axioms and inference

rules for reasoning about �rst-order concepts. They are to be used together with

the propositional ones already introduced. See Manna [10] and Kr�oger [9] for

proof systems for chop-free �rst-order temporal logic. We let v and v

0

refer to

both static and state variables.

F1 ` All substitution instances of valid nonmodal formulas of conven-

tional �rst-order logic with arithmetic.

F2 ` 8v:S � S

e

v

,

where the expression e is sort-compatible with v and v is free for e

in S. If e contains any temporal operators, then v must be a state

variable not occurring freely in S within the left side of a chop

formula or within a chop-star formula.

F3 ` 8v: (S � T ) � (S � 8v:T ) ,

where v doesn't occur freely in S.

F4 ` ({v:S) = ({v

0

:S

v

0

v

) ,

where v and v

0

are static variables of one sort and v is free for v

0

in S.

F5 ` 8v: (S � T ) � ({v:S) = ({v:T ) ,

where v is static.

F6 ` (9v:S) ^ ({v:S) = v � S ,

where v is a static variable.

F7 ` w �

2

w ,

where w only contains static variables.

F8 ` 9v: (S;T ) � (9v:S);T ,

where v doesn't occur freely in T .

F9 ` 9v: (S;T ) � S; (9v:T ) ,

where v doesn't occur freely in S.

F10 ` (9v:S);



(9v:T ) � 9v: (S;



T ) ,

where v is a state variable.

8Gen ` S ) ` 8v:S ,

for any variable v.

Induct ` S

0

n

; ` S � S

n+1

n

) ` S ,

for any static variable n whose sort is the natural numbers.
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The axiom F1 permits using properties of conventional �rst-order logic with

arithmetic without proof. Most of the other axioms and the two inference rules

at the end are adaptations of conventional nonmodal equivalents for quanti�ers

and de�nite descriptions. Only four axioms actually contain temporal operators.

Axiom F7 deals with state formulas containing only static variables. The two

axioms F8 and F9 show how to move an existential quanti�er out of the scope

of chop. The remaining temporal axiom F10 shows how to combine two state

variables in nearly adjacent subintervals into one state variable for the entire

interval. We extensively use it and lemmas derived from it for constructing aux-

iliary variables. Dutertre [1] gives a complete �rst-order ITL proof system but

unfortunately with a nonstandard semantics of intervals. In addition, it has not

be developed with compositional proofs in mind.

A.1 Axioms for In�nite Time

The proof system for ITL with in�nite time contains all the axioms and basic

inference rules of the basic proof system. We also include the following two

propositional axioms:

P13 ` (S ^ inf );T � S ^ inf ;

P14 ` S ^

2

�

S � (T ^ more);S

�

� T

�

:

The �rst-order axiom now given is sometimes needed for constructing auxiliary

variables with chop-star :

F11 `

�

8v: 9v

0

: (v = v

0

^ S)

�

�

� 8v: 9v

0

: (v = v

0

^ S

�

) ,

where v and v

0

are state variables and v does not occur freely S.

It may be that a complete axiom system for even propositional ITL with in�nite

intervals can only be achieved by means of a nonconventional inference rule. This

is not central to our approach.
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