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Abstract

The compositional specification and verification of the behavior of concurrent processes is a challenging research
area. The assumption/commitmentapproach has emerged as one way to systematically achieve the desired modularity.
However, it is generally limited to reasoning about safety properties which apply throughout the execution of a system.
Liveness properties involving intermittent behavior are harder to address. We investigate the use of assumptions and
commitments in Interval Temporal Logic and show how to augment them with some more information for handling
liveness. The proposed techniques are a continuation of our previous research on formalizing assumptions and
commitments through the use of fixpoints of certain simple temporal operators. Associated with this is a generalized
notion of Owicki and Gries’ proof outlines. We illustrate the approach with examples including a mutual exclusion
system with time stamps.

1 Introduction

Assumptions and commitments are recognized as one way to reasoning about concurrent systems. Jones [6] shows
how to augment the pre- and post-conditions found in Hoare logic with compositional assumptions and commitments
(called by Jones rely- and guarantee-conditions). Assumptions are especially selected so that if they are true for a
system component, then they are automatically true for all sequential subcomponents. Thus one can say that such
assumptions are easy to import. Commitments are chosen such that when true for a series of sequential subcomponents
are also automatically true for the overall component. Thus, such commitments are easy to export. This style of
analysis works best when one reasons about safety properties [11] which hold everywhere but it is more limited when
dealing with liveness. One reason is that liveness properties are by definition not necessarily true all the time but only
some of the time. Consequently, they are too weak to be exported with conventional compositional commitments.

Other researchers have investigated how to handle liveness. Stølen [23] deals with it by adding a wait-condition to
Jones’ approach. See also Xu and He [27], and Xu, Cau and Collette [24] and a survey by Xu, de Roever and He [26].
Pandya and Joseph [21] and Jonsson and Tsay [7] use linear-time temporal logic.

In this work we show how to augment compositional assumptions and commitments with some extra notation
to bridge the gaps where exportable commitments by themselves are not sufficient. Interval Temporal Logic (ITL)
[13, 4, 14], serves as our framework. In previous work [16] we characterized generalized versions of compositional
assumptions and commitments in ITL as fixpoints of certain simple temporal operators. An application of this
approach to intervals with infinite length was illustrated in [17]. We now show that fixpoints of some other ITL
operators facilitate reasoning about liveness. Our approach also supports an extended form of the proof outlines of
Owicki and Gries [18, 19] as a means to visually elucidate compositional proofs about both safety and liveness.

The remaining sections of the paper are organized as follows. In Section 2 we overview how to embed assumptions
and commitments in Interval Temporal Logic and briefly discuss how to extend this to handle liveness. Section 3 gives
a summary of ITL’s syntax and semantics as well as a compositional proof system. Section 4 gives more details about
dealing with liveness and includes various examples. For simplicity, Sections 3 and 4 only consider temporal intervals
having finite length. Section 5 extends ITL and our compositional methods to reasoning about infinite intervals. We
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include a number of small examples throughout Sections 4 and 5. One involves proving the absence of deadlock in
a simple two-process system with shared write access to a counter variable. Section 6 looks at two nontrivial mutual
exclusion systems operating over infinite time. The first is easier to describe but can deadlock. The second one
remedies this deficiency through the use of time stamps. Both of these systems served as our primary case studies
during the development of the methods presented here.

2 Overview of Assumptions and Commitments in ITL

Modularity is a desirable attribute of any formal method. We wish to address how to modularly specify and prove
liveness properties. However, it is necessary to first present some background material. One of the best known modular
logical notations is Hoare logic [5]. It uses the important insight that proofs about the pre/post-condition behavior of
a sequential program can be decomposed into subproofs of the program’s parts. In Interval Temporal Logic we can
express a Hoare clause as a theorem about discrete intervals of time consisting of one or more states:

w ^ Sys � fin w0:

Here w and w0 are state formulas containing no temporal operators and Sys is some arbitrary temporal formula we wish
to reason about. The temporal formula fin w0 is true on an interval iff w0 is true in the interval’s final state. A more
precise definition of fin and other ITL operators is given in Section 3.

The pre/post-condition approach is not particularly well suited for specifying and verifying systems in which
ongoing and parallel behavior are important. However, this can be remedied through the addition of what are
commonly known as assumptions and commitments. Francez and Pnueli [3] are the first to consider them and refer
to them as interface predicates. The following implication shows the basic form of an ITL theorem incorporating an
assumption As and a commitment Co:

w ^ As ^ Sys � Co ^ fin w0:

In general As and Co can be arbitrary temporal formulas. However, when compositional reasoning about sequential
parts of a system is needed, it is useful to require that As and Co be respective fixpoints of the ITL operators 2a (read
“box-a”) and � (read “chop-star”) as is now shown:

As � 2a As; Co � Co�:

The first equivalence ensures that if the assumption As is true on an interval, it is also true in all subintervals. The
second ensures that if zero or more sequential instances of the commitment Co span an interval, Co is also true on
the interval itself. The ITL operator � (chop-star) used here is a repetitive version of the chop operator mentioned
above and is similar to the Kleene star found in regular expressions. The temporal formula2(K = 1) (read “K always
equals 1”) is an example of an importable assumption. The temporal formula K  K (“K’s initial and final values on
the interval are equal”) is an exportable commitment. Some formulas such as stable K (“K’s value remains the same
throughout the interval”) can be used both as assumptions and commitments. These are precisely the fixpoints of the
ITL operator keep, where the formula keep S, for some subformula S, is true on an interval iff S is true on every unit
subinterval (i.e., consisting of exactly two adjacent states). For assumptions and commitments obeying the above, the
next derivable proof rule is sound:

` w ^ As ^ Sys � Co ^ fin w0;
` w0 ^ As ^ Sys0 � Co ^ fin w00

` w ^ As ^ (Sys; Sys0) � Co ^ fin w00:
(1)

The rule uses the ITL operator “;” (chop) which combines the formulas Sys and Sys0 in series. That is, Sys; Sys0 is true
on an interval iff Sys is true on a left subinterval and Sys’ is true on the corresponding right subinterval which shares
one state.

Here is an analogous rule for decomposing a proof for zero or more iterations of a formula Sys:

` w ^ As ^ Sys � Co ^ fin w
` w ^ As ^ Sys� � Co ^ fin w:

(2)

Similar rules are possible for if , while and other constructs.
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Note that our approach only requires assumptions and commitments which are used directly in rules such (1)
and (2) to be compositional. Compositional proofs about a system in ITL typically also involve reasoning about
noncompositional assumptions and commitments as well. For instance, there is an important class of formulas using
the standard temporal operator 2 (read “box” or “always”) and of the form 2S which often occur in temporal logic
specifications. In general they can neither be used directly as compositional assumptions or commitments. However,
those of the form2w, for some state formula w, can be used as assumptions since they are fixpoints of the operator2a :

` 2w � 2a 2w:

However, even these cannot be used as exportable commitments since, for example, the formula (2w)� (and indeed
any formula S�) is vacuously true on intervals having exactly one state whereas 2w is not necessarily true on them. In
other words (2w)� ^ :2w is satisfiable for some w and therefore2w � (2w)� is not in general a theorem. However,
there is a simple way around this. We express 2w as the conjunction of keep w and fin w:

` 2w � keep w ^ fin w:

Since w is a state formula, keep w turns out to be true on an interval iff w is true on all of the interval’s states except
possibly the last one. Since we already mentioned that keep S for any formula S is a perfectly good exportable
commitment, we can use keep w in compositional proofs and at the very end combine it with fin w to obtain the desired
(generally nonexportable) commitment 2w.

The techniques so far presented do not address reasoning about formulas involving liveness such as 23x and
2(x � 3x0); where x and x0 are state formulas. In what follows we investigate how to handle such temporal formulas
in compositional proofs. This is facilitated through the exploitation of further fixpoints of ITL operators. In general,
such formulas are not suitable as compositional assumptions or commitments. Let us now use the temporal operators
2

m (“box-m”) and 3i (“diamond-i”). A formula 2m S is true on an interval iff the subformula S is true on all terminal
(suffix) subintervals with more than one state, that is all the interval’s nonempty terminal subintervals. Therefore 2m
ignores the last (empty) terminal subinterval consisting of one state and is slightly weaker than 2. A formula 3i S is
true on an interval iff S is true on some initial (prefix) subinterval (which might be the interval itself). It turns out that
for any S, the formula 2m 3i S is a fixpoint of chop-star:

` 2

m
3

i S � (2

m
3

i S)�:

It therefore follows that for any formula DI which is a fixpoint of3i , the formula2m DI is always a fixpoint of chop-star
and is a suitable compositional commitment. Now, for any state formulas x and x0, the formula x � 3x0 is a fixpoint
of the temporal operator 3i . Consequently, the formula 2m (x � 3x0) is a fixpoint of chop-star. In order to prove a
formula 2(x � 3x0), we compositionally establish the related formula 2m (x � 3x0) and also show fin(x � 3x0), thus
obtaining2(x � 3x0). Here we are using the following lemma relating2 with2m and fin:

` 2S � 2m S ^ fin S:

There are also other useful fixpoints of 3i which we consider later. In addition, the conjunction and disjunction of two
such fixpoints are themselves fixpoints of 3i .

The fixpoints of the ITL operator 3a (read “diamond-a”) are also important. In general, 3a S is true on an interval
iff S is true on some subinterval (possibly the interval itself). Formulas such as 3x, where x is a state formula, and
: stable A (meaning “The variable A has more than one value over the interval”) are fixpoints of3a . If DA is a fixpoint
of 3a , then it is also a fixpoint of 3i so 2m DA is a fixpoint of chop-star and hence a compositional commitment. More
generally, the formula x � DA is always a fixpoint of 3i and therefore 2m (x � DA) is a fixpoint of chop-star. The
fixpoints of 3a are closed under conjunction and disjunction.

Let us consider another benefit of fixpoints of 3a . Suppose one wishes to prove that a formula Sys; Sys’ with a
suitable precondition and an importable assumption implies a commitment 2m (x � DA) for some state formula x and
some fixpoint DA of 3a . The most straightforward thing to do is to first show the commitment both for Sys and Sys0

and then combine the results using proof rule (1). However, this is not always possible since DA might never be true
in Sys and only occur in Sys0 even though x is perhaps somewhere true in Sys. In such cases, we can use the following
derivable proof rule as long as all intervals are assumed for simplicity to have finite length:

` w ^ As ^ Sys � fin w0;
` w0 ^ As ^ Sys0 � 2

m
(x � DA) ^ DA ^ fin w00

` w ^ As ^ (Sys; Sys0) � 2

m
(x � DA) ^ DA ^ fin w00:

(3)
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This shows that the only thing we need to verify about Sys is that it ensures that the statement w0 is true in its final
state. Both the desired commitment 2m (x � DA) and DA itself can be obtained for Sys; Sys0 from Sys0 alone because
DA is a fixpoint of 3a . Later on in Section 4 we illustrate how to use this proof technique. A variant rule for infinite
time is discussed in Section 5.

In what follows, we will further examine the significance of fixpoints of such temporal operators as chop-star, 2a ,
3

i and 3a in reasoning about liveness.

3 Review of Interval Temporal Logic

We now describe Interval Temporal Logic. The presentation is rather brief and the reader should refer to references
such as [13, 4, 14, 16] for more details. ITL is a linear-time temporal logic with a discrete model of time. An interval
� in general has a length j�j � 0 and a finite, nonempty sequence of j�j + 1 states �0; : : : ; �

j�j

. Thus the smallest
intervals have length 0 and one state. Each state �i for i � j�j maps variables a, b, c, : : : , A, B, C, : : : to data values.
Lower case variables a, b, c, : : : are called static and do not vary over time. Infinite intervals can also be handled by
us but for simplicity we do not consider them until Section 5. Basic ITL contains conventional propositional operators
such as ^ and first-order ones such as 8 and =. Normally expressions and formulas are evaluated relative to the
beginning of the interval. For example, the formula J = I + 1 is true on an interval � iff the J’s value in �’s initial
state is one more that I’s value in that state.

There are three primitive temporal operators skip, “;” (chop) and “�” (chop-star). Here is their syntax, assuming
that S and T are themselves formulas:

skip S; T S�:

The formula skip has no operands and is true on an interval iff the interval has length 1 (i. e., exactly two states). Both
chop and chop-star permit evaluation within various subintervals. A formula S; T is true on an interval � with states
�0; : : : ; �

j�j

iff the interval can be chopped into two sequential parts sharing a single state �k for some k � j�j and in
which the subformula S is true on the left part �0; : : : ; �k and the subformula T is true on the right part �k; : : : ; �

j�j

.
For instance, the formula skip; (J = I + 1) is true on an interval � iff � has at least two states �0; �1; : : : and J = I + 1
is true in the second one �1. A formula S� is true on an interval iff the interval can be chopped into zero or more
sequential parts and the subformula S is true on each. An empty interval (one having exactly one state) trivially satisfies
any formula of the form S� (including false�). The following serves as an alternative programming-like syntax for S�:

for some times do S:

We generally use w, w0, x, x0 and so forth to denote state formulas with no temporal operators in them. Expressions are
denoted by e, e0 and so on. Table 1 shows a variety of useful temporal operators definable in ITL. A summary of the
kinds of fixpoints used in our approach is shown in Table 2. It also includes examples of them. Note that in general
the variables As and Co can refer respectively to arbitrary assumptions and commitments and they are fixpoints only
when it is specifically stated, such as when they are supposed to be compositionally importable or exportable. This is
the case most of the time in our presentation here. In the long run, it might be better to refer to an assumption which
is a fixpoint of 2a by the name BA and a commitment which is a fixpoint of chop-star by CS.

In [16] we made use of the conventional logical notion of definite descriptions of the form {v: S where v is a variable
and S is a formula (see for example Kleene [8, pages 167–171]). These allow a uniform semantic and axiomatic
treatment in ITL of expressions such as 
e (e’s next value), fin e (e’s final value) and len (the interval’s length). For
example, 
e can be defined as follows:


e
def
= {a:
(e = a);

where a does not occur freely in e. Here is a way to define temporal assignment using a fin term:

e e0
def
� (fin e) = e0:

The following operator stable tests whether an expression’s value changes and is also later needed by us:

stable e
def
� 9a:2(e = a);
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Conventional linear-time temporal logic operators

S

def
� skip; S Next




w S
def
� :




:S Weak next

3S
def
� true; S Sometimes (some terminal subinterval)

2S
def
� :3:S Always (all terminal subintervals)

Some other important operators

more
def
�


true Nonempty interval

empty
def
� :more Empty interval

fin S
def
� 2(empty � S) Final state

halt S
def
� 2(S � empty) Exactly final state

2

m S
def
� 2(more � S) All nonempty terminal subintervals

3

m S
def
� 3(more ^ S) Some nonempty terminal subinterval

While and repeat loops

while w do S
def
� (w ^ S)� ^ fin:w

repeat S until w
def
� S; while:w do S

More interval-oriented operators

3

a S
def
� true; S; true Some subinterval

2

a S
def
� :3

a
:S All subintervals

3

i S
def
� S; true Some initial subinterval

2

i S
def
� :3

i
:S All initial subintervals

keep S
def
� 2

a
(skip � S) All unit subintervals

keepnow S
def
� 3

i
(skip ^ S) First unit subinterval

Table 1: Some definable ITL operators

Operator
Formula

name Sample formula Meaning

2

a As stable K “The variable K is stable”
2 BT fin Mk “The final value of Mk is true”

chop-star Co 2

m
: stable K “In all nonempty terminal subintervals, K is not stable”

3

i DI even(K) � : stable K “If K is initially even, it is not stable”
3

a DA : stable K “K is not stable”
keep (none) keep(K � 
K) “K never decreases”

Table 2: Various useful temporal fixpoints
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where the static variable a is chosen so as not to occur freely in the expression e. The formula e gets e0 is true iff in
every unit subinterval, the initial value of the expression e0 equals the final value of the expression e:

e gets e0
def
� keep(e e0):

An expression is said to be padded iff it is stable except for possibly the last state in the interval:

padded e
def
� 9a: keep(e = a);

where the static variable a does not to occur freely in e. A useful version of assignment called padded temporal
assignment can then be defined:

e <� e0
def
� (fin e) = e0 ^ padded e:

This ensures that e does not change until possibly the very end of the interval when the assignment takes effect.

3.1 A Practical Proof System

We now present a very powerful and practical compositional proof system for ITL. The reader may prefer to initially
omit this subsection. Our experience in rigorously developing hundreds of propositional and first-order proofs has
helped us refine the axioms and convinced us they are sufficient for a very wide range of purposes. See Moszkowski [16]
for more about this. The proof system is divided into a propositional part and a first-order part. Our discussion looks
at each in turn.

3.1.1 Propositional Axioms and Inference Rules.

The propositional axioms and inference rules mainly deal with chop, and skip and operators derived from them. Only
one axiom is needed for chop-star. The proof system gives nearly equal treatment to initial and terminal subintervals.
This is exceedingly important for the kinds of proofs we do. In addition, this makes the proof system easier to
understand since much of it consists simply of duals in this sense. In contrast, most temporal logics cannot handle
initial subintervals and even other proof systems for ITL largely neglect them.

Rosner and Pnueli [22] and Paech [20] give propositional proof systems for ITL with infinite intervals and prove
completeness. Our proof system contains some of the propositional axioms suggested by Rosner and Pnueli but also
includes our own axioms and inference rule for the operators 2i , keepnow, and chop-star. These assist in deducing
propositional and first-order theorems and in deriving rules for importing, exporting and other aspects of composition.

Prop ` Substitutions of tautologies
P2 ` (S; T); U � S; (T; U)
P3 ` (S _ S0); T � (S; T) _ (S0; T)
P4 ` S; (T _ T0) � (S; T) _ (S; T0)
P5 ` empty; S � S
P6 ` S; empty � S

MP ` S � T; ` S ) ` T
2Gen ` S ) ` 2S

P7 ` w � 2

i w
P8 ` 2

i
(S � S0) ^ 2(T � T0) � (S; T) � (S0; T0)

P9 `


S � :
:S
P10 ` 3

i
�

(


halt w) ^ S
�

� 2

i
�

(


halt w) � S
�

P11 ` S ^ 2(S � 


w S) � 2S
P12 ` S� � empty _ (S ^ more); S�

2

i Gen ` S ) ` 2

i S

We have strengthened axiom P10 in order to facilitate reasoning about initial subintervals and what are called markers
(see Subsect. 4.1). The following earlier version used in proofs about the keep operator can be readily deduced from
P10 (with w replaced by true), the other axioms and inference rules:

` keepnow S � : keepnow:S:

We now give a sample theorem and its proof:

` 2

i
(S � T) � 3

i S � 3

i T

Proof:

1 ` true � true Prop
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2 ` 2(true � true) 1,2Gen
3 ` 2

i
(S � T) ^ 2(true � true) P8

` � (S; true) � (T; true)
4 ` 2

i
(S � T) � (S; true) � (T; true) 2,3,Prop

5 ` 2

i
(S � T) � 3

i S � 3

i T 4,def. of3i

Theorem 3.1 The propositional proof system is complete for quantifier-free formulas containing only boolean-valued
static and state variables.

Outline of proof: For a given formula, we construct a finite tableau consisting of a number of states. Each state is
represented as a disjunction whose disjuncts are themselves conjunctions of primitive propositions, next formulas and
their negations. Now suppose S is a valid formula. Construct a tableau for its negation :S. Call a state in a tableau
final if it is satisfiable by some empty interval. No state reachable from the initial state in our tableau for :S is final,
since otherwise we can use the path to construct a model for :S. Therefore the tableau reflects that :S is not true
in any finite intervals. We convert this to a proof-by-contradiction for S. This technique also applies to a version of
Rosner and Pnueli’s proof system restricted to finite intervals.

3.1.2 First-Order Axioms and Inference Rules.

Below are axioms and inference rules for reasoning about first-order concepts. They are to be used together with the
propositional ones already introduced. See Manna [12] and Kröger [10] for proof systems for chop-free first-order
temporal logic. We let v and v0 refer to both static and state variables.

F1 ` All substitution instances of valid nonmodal formulas of conventional
first-order logic with arithmetic.

F2 ` 8v: S � Se
v;

where the expression e is sort-compatible with v and v is free for e in S.
If e contains any temporal operators, then v must be a state variable not
occurring freely in S within the left side of a chop formula or within a
chop-star formula.

F3 ` 8v: (S � T) � (S � 8v: T);
where v doesn’t occur freely in S.

F4 ` ({v: S) = ({v0: Sv0
v );

where v and v0 are static variables of one sort and v is free for v0 in S.
F5 ` 8v: (S � T) � ({v: S) = ({v: T); where v is static.
F6 ` (9v: S) ^ ({v: S) = v � S; where v is a static variable.
F7 ` w � 2w; where w only contains static variables.
F8 ` 9v: (S; T) � (9v: S); T;

where v doesn’t occur freely in T.
F9 ` 9v: (S; T) � S; (9v: T);

where v doesn’t occur freely in S.
F10 ` (9v: S);
(9v: T) � 9v: (S;
T);

where v is a state variable.
8Gen ` S ) ` 8v: S; for any variable v.
Induct ` S0

n; ` S � Sn+1
n ) ` S;

for any static variable n whose sort is the natural numbers.

The axiom F1 permits using properties of conventional first-order logic with arithmetic without proof. Most of the
other axioms and the two inference rules at the end are adaptations of conventional nonmodal equivalents for quantifiers
and definite descriptions. Only four axioms actually contain temporal operators. Axiom F7 deals with state formulas
containing only static variables. The two axioms F8 and F9 show how to move an existential quantifier out of the scope
of chop. The remaining temporal axiom F10 shows how to combine two state variables in nearly adjacent subintervals
into one state variable for the entire interval. We extensively use it and lemmas derived from it for constructing
auxiliary variables. Dutertre [2] gives a complete first-order ITL proof system but with a nonstandard semantics of
intervals.
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4 More about Analyzing Liveness

We now review and expand upon some of the ideas presented in Section 2 about liveness. As mentioned there, a
formula of the form 2S can not in general be used as a compositional assumption or commitment. A formula of the
more restricted form 2w, for some state formula w, can be used directly as an importable assumption and a minor
variant of it of the form keep w can be used as an exportable commitment which is ultimately combined with fin w to
establish2w. Now there are many other important formulas of the form 2S which are not addressed by this. We now
consider one way to deal with at least some such formulas. Recall that 2m S to be true on an interval iff S is true on all
terminal (suffix) subintervals except possibly the last one:

2

m S
def
� 2(more � S):

Note that for a state formula w the formulas keep S and 2m S are in fact provably equivalent:

` keep w � 2m w:

An important observation already noted in Section 2 is that for any S, the formula 2m 3i S is a fixpoint of chop-star:

` 2

m
3

i S � (2

m
3

i S)�:

It follows that for any3i -fixpoint DI, the formula2m DI is a fixpoint of chop-star and is suitable for use as a compositional
commitment. Important liveness-related formulas such as 3x and x � 3x0 are in fact fixpoints of 3i , provided that x
and x0 are state formulas. The important construct keep S which is frequently used as a compositional assumption and
commitment in proofs can be expressed with the 2m operator and a 3i -fixpoint:

` keep S � 2m 3i
(skip ^ S):

Furthermore, all conjunctions and disjunctions of fixpoints of 3i are themselves fixpoints of 3i .
Consider for example the formula (K <� K + 1)�. We can compositionally prove that this implies the formula

2

m
: stable K. The formula 2m : stable K can be directly used as the commitment in the proof because the subformula
: stable K is provably a fixpoint of 3i :

` : stable K � 3i
: stable K:

In fact it is even a fixpoint of 3a . We first deduce that K <� K + 1 implies the commitment 2m : stable K:

` K <� K + 1 � 2

m
: stable K:

Next, we use this in a simplified version of proof rule (1) in Section 2 which omits pre- and post-conditions as well as
assumptions to obtain the desired goal:

` (K <� K + 1)� � 2

m
: stable K:

Let us now look at how to prove the following in a compositional way:

` K � 1 ^ (stable K; K <� 2K)� � 2

m
: stable K ^ fin(K � 1): (4)

Note that we are unable to obtain the commitment 2m : stable K from the first part of each loop step, that is stable K, by
purely local analysis. In order to get around this, more proof techniques are needed as was noted in Section 2. First of
all, in addition to compositional assumptions and commitments, we sometimes include another formula DA which is
some fixpoint of the temporal operator3a . Here is the general form of a suitable implication:

w ^ As ^ Sys � Co ^ DA ^ fin w0:

Now the formula x � DA is a fixpoint of3i . Among other things, this ensures that the formula2m (x � DA) is a fixpoint
of chop-star and hence a compositional commitment. However, DA itself is not in general a fixpoint of chop-star and
therefore cannot be exported in the usual way. However, if we have a specification Sys; Sys0 and can show that under
appropriate circumstances the second subformula Sys0 implies both 2m (x � DA) and DA, then both 2m (x � DA) and
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fK � 1g
K <� 2K
fK � 1g

2

m
: stable K ^ : stable K

Figure 1: Proof outline for lemma (7).

fK � 1g
for some times do (

fK � 1g
stable K
fK � 1g

true

K <� 2K
fK � 1g

2

m
: stable K ^ : stable K

2

m
: stable K ^ : stable K

)

fK � 1g

2

m
: stable K

Figure 2: Proof outline for lemma (4).

DA can be automatically exported from Sys; Sys0. This avoids first proving that Sys implies 2m (x � DA). Here is a
derivable proof rule for fixpoints of DA:

` w ^ As ^ Sys � fin w0;
` w0 ^ As ^ Sys0 � 2

m
(x � DA) ^ DA ^ fin w00

` w ^ As ^ (Sys; Sys0) � 2

m
(x � DA) ^ DA ^ fin w00:

(5)

The following corollary rule uses 2m DA as the commitment by replacing x by true and simplifying:

` w ^ As ^ Sys � fin w0;
` w0 ^ As ^ Sys0 � 2

m DA ^ DA ^ fin w00

` w ^ As ^ (Sys; Sys0) � 2

m DA ^ DA ^ fin w00:
(6)

Such a rule provides a way to export the commitment 2m : stable K in the example above since : stableK is in fact a
fixpoint of 3a . Below is an application of proof rule (6) to the example:

` K � 1 ^ true ^ stable K � fin K � 1;
` K � 1 ^ true ^ K <� 2K � 2

m
: stable K ^ : stable K ^ fin K � 1

` K � 1 ^ true ^ (stable K; K <� 2K) � 2

m
: stable K ^ : stable K ^ fin K � 1:

Once this is done, we simply export the commitment 2m : stableK from the iterative formula (stable K; K <� 2K)�

using proof rule (2) found in Section 2. Owicki and Gries [18, 19] developed proof outlines as a visual tool for
concisely reasoning about Hoare clauses. Figure 1 contains a small proof outline generalized to include a commitment
and which corresponds to the following lemma:

` K � 1 ^ true ^ K <� 2K � 2

m
: stable K ^ : stable K ^ fin K � 1: (7)

The proof outline shows the pre- and post-conditions, the sequential component K <� 2K and on the right of the
large bracket is the resulting commitment. We keep the assumption implicit here and in other proof outlines since it is
usually importable and remains the same in all sequential subcomponents. A generalized proof outline for lemma (4)
is shown in Figure 2. In particular, it illustrates the composition of commitments of subcomponents into those for
larger parts of a system.

A weakened variant of rule (6) is sometimes used to export DA from the left part of Sys; Sys0 without exporting
2

m DA as well:
` w ^ As ^ Sys � DA ^ fin w0;
` w0 ^ As ^ Sys0 � fin w00

` w ^ As ^ (Sys; Sys0) � DA ^ fin w00:
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fK = jg
stable K
fK = jg

2

m
(K = j)

K <� 2K
fK = 2jg

2

m
(K = j)

^ 2

m
3K = 2j

^ 3K = 2j

2

m
(K = j)

^ 2

m
3K = 2j

^ 3K = 2j
2

m
(K = i � 3K = 2i)

Figure 3: Proof outline for lemma (9).

Here is another theorem we wish to verify about our example by using a 3a -fixpoint:

` (stable K; K <� 2K)� ^ fin(K = n) � 2(K = i ^ i 6= n � 3K = 2i): (8)

The proof of this theorem introduces an auxiliary static variable j and the formula3K = 2j is used as a 3a -fixpoint. A
generalization of rule (6) permitting an additional exportable commitment Co is utilized:

` w ^ As ^ Sys � Co ^ fin w0;
` w0 ^ As ^ Sys0 � Co ^ 2

m DA ^ DA ^ fin w00

` w ^ As ^ (Sys; Sys0) � Co ^ 2

m DA ^ DA ^ fin w00:

An overview of the proof of theorem (8) is given below. Most pre- and post-conditions as well as all assumptions are
simply true and we omit them:

1: ` K = j ^ stable K � 2

m
(K = j) ^ fin(K = j)

2: ` K = j ^ K <� 2K � 2

m
(K = j) ^ 2m3K = 2j ^ 3K = 2j

3: 1; 2) ` K = j ^ (stable K; K <� 2K) � 2

m
(K = j) ^ 2m3K = 2j ^ 3K = 2j

4: ` 2

m
(K = j) ^ 2m3K = 2j � 2

m
(K = i � 3K = 2i)

5: 3; 4) ` K = j ^ (stable K; K <� 2K) � 2

m
(K = i � 3K = 2i)

6: 5) ` (stable K; K <� 2K) � 2

m
(K = i � 3K = 2i)

7: 6) ` (stable K; K <� 2K)� � 2

m
(K = i � 3K = 2i)

8: ` 2

m
(K = i � 3K = 2i) ^ fin(K = n) � 2(K = i ^ i 6= n � 3K = 2i)

9: 7; 8) ` (stable K; K <� 2K)� ^ fin(K = n) � 2(K = i ^ i 6= n � 3K = 2i):

Figure 3 depicts a proof outline for the lemma now given about the body of the loop:

` (stable K; K <� 2K) � 2

m
(K = i � 3K = 2i): (9)

The results of this are used in Figure 4 for the proof outline of a lemma about the overall loop:

` (stable K; K <� 2K)� � 2

m
(K = i � 3K = 2i): (10)

4.1 Markers

Here is a variant of the previous example with the two sequential parts of the loop body exchanged:

(K <� 2K; stableK)� ^ fin(K = n):

Once again we wish to prove that this implies the formula

2(K = i ^ i 6= n � 3K = 2i):

However, the proof is more complicated since we can no longer readily propagate the 3a -fixpoint 3a K = 2j from
K<�2K back to stable K. A more powerful technique for analyzing reachability is needed. We now introduce the
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ftrueg
for some times do (
ftrueg
9j: (
fK = jg
LoopBody
fK = 2jg

2

m
(K = i � 3K = 2i)

)

ftrueg

2

m
(K = i � 3K = 2i)

)

ftrueg

2

m
(K = i � 3K = 2i)

Figure 4: Proof outline for lemma (10).

notion of marker. This is a boolean state variable, called here Mk, which is true exactly at the start and end of loop
iterations. A variant of chop-star having a marker can be defined as follows:

chopstarMkS
def
� (S ^


halt Mk)�:

See Table 1 for the definition of the halt construct. The following programming syntax is also used for this kind of
chop-star:

forMk some times do S:

Without loss of generality, we can always existentially introduce a marker as an auxiliary variable. The following
provable lemma states this:

` S� � 9Mk: (Mk ^ chopstarMkS);

where Mk does not occur freely in the formula S. The marker facilitates postponing reachability of a 3a -fixpoint until
a later loop iteration. We originally considered markers in [13, page 127].

In our example, we introduce such a marker and prove the following lemma about liveness:

` Mk ^ chopstarMk(K <� 2K; stableK)
� 2

m
�

K = i � 3(K = 2i) _ 3(Mk ^ K = i)
�

^ 2

m
�

Mk ^ K = i � 3K = 2i
�

:

(11)

The two commitments are combined using temporal reasoning and ensure that whenever K = i, eventually either
K = 2i or the overall interval finishes with K still equalling i:

` 2

m
�

K = i � 3(K = 2i) _ 3(Mk ^ K = i)
�

^ 2

m
(Mk ^ K = i � 3K = 2i)

� 2

m
�

K = i � (3K = 2i _ fin K = i)
�

:

(12)

After hiding the marker, we obtain the next lemma:

` (K <� 2K; stable K)� � 2

m
�

K = i � (3K = 2i _ fin K = i)
�

:

The overall reduced commitment together with the originally given postcondition fin(K = n) imply the desired
formula:

` 2

m
�

K = i � (3K = 2i _ fin K = i)
�

^ fin(K = n) � 2(K = i ^ i 6= n � 3K = 2i):
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fMk ^ K = jg
K <� 2K
fK = 2jg

2

m K = j
^ 2

m
3K = 2j

^ 3K = 2j

stable K
fMk ^ K = 2jg

2

m K = 2j
^ 2

m
3(Mk ^ K = 2j)

2

m
(K = j _ K = 2j)

^ 2

m
3

�

K = 2j
_ (Mk ^ K = j)

�

^ 3K = 2j

Co ^ DI

Figure 5: Proof outline for lemma (17).

The proof of lemma (11) requires a 3a -fixpoint called here DA and a fixpoint of the temporal operator 2 referred
to this formula as BT. In our treatment of loops, BT is always fin Mk. Here is the generalized version of proof rule (5)
for chop:

` w ^ As ^ Sys � fin w0;
` w0 ^ BT ^ As ^ Sys0 � 2

m
(x � DA) ^ DA ^ fin w00

` w ^ BT ^ As ^ (Sys; Sys0) � 2

m
(x � DA) ^ DA ^ fin w00:

(13)

The proof rule now given is for the version of chop-star with a marker. It uses a 3i -fixpoint DI:

` w ^ fin Mk ^ As ^ Sys � DI ^ fin w
` w ^ As ^ chopstarMkSys � 2

m
(Mk � DI) ^ fin w:

(14)

The following variants of these rules permit an additional commitment Co and are in fact the ones used for proving
lemma (17) shown above.

` w ^ As ^ Sys � Co ^ fin w0;
` w0 ^ BT ^ As ^ Sys0 � Co ^ 2

m
(x � DA) ^ DA ^ fin w00

` w ^ BT ^ As ^ (Sys; Sys0) � Co ^ 2

m
(x � DA) ^ DA ^ fin w00:

(15)

` w ^ fin Mk ^ As ^ Sys � Co ^ DI ^ fin w
` w ^ As ^ chopstarMkSys � Co ^ 2

m
(Mk � DI) ^ fin w:

(16)

The analysis of the loop body K <� 2K; stableK involves the use of rule (15) to deduce the lemma below:

` true ^ fin Mk ^ true ^ (K <� 2K; stableK)
� 2

m
�

K = i � 3(K = 2i) _ 3(Mk ^ K = i)
�

^ (K = i � 3K = 2i) ^ fin true:
(17)

Figure 5 and Figure 6 show proof outlines for establishing lemmas (17) and (11), respectively. In these, Co stands for
the exportable commitment

2

m
�

K = i � 3K = 2i _ 3(Mk ^ K = i)
�

and DI stands for the3i -fixpoint K = i � 3K = 2i.

5 ITL with Infinite Time

The semantics and proof system so far presented is suitable for reasoning about finite intervals. We now discuss
some modifications needed to permit infinite intervals as well. First, we apply our semantics of S; T and S� to infinite
intervals. As before this means S; T is true on such an interval if the interval can be divided into one part for S and
another adjacent part for T and that S� is true if the interval can be divided into a finite number of parts, each satisfying
S. In addition, we now also let S; T be true on an infinite interval which satisfies S. For such an interval, we can ignore
T. Furthermore, we let S� be true on an infinite interval that is divisible into a finite number of subintervals where the
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fMkg
forMk some times do (
fMkg
9j: (
fMk ^ K = jg
LoopBody
fMk ^ K = 2jg

Co ^ DI

)

fMkg

Co ^ DI

)

fMkg

Co ^ 2

m
(Mk � DI)

Figure 6: Proof outline for lemma (11).

last one has infinite length and each satisfies S or alternatively into an infinite number of finite intervals each satisfying
S. We define new constructs for testing whether an interval is infinite or finite, and alter the definition of 3:

inf
def
� true; false finite

def
� :inf

3S
def
� finite; S sfin S

def
� 3(empty ^ S):

Here sfin S is a strong version of fin S and is true only on finite intervals. In contrast, fin S is vacuously true on all
infinite intervals. As we have noted, the formula S� can be true on an infinite interval where S occurs infinitely often
in successive subintervals each having finite length. We denote this by S! (read “chop-omega”) and define it in the
following way:

S!
def
� (S ^ finite)� ^ inf :

The other possibility for S� on an infinite interval involves a formula S being true for a finite number of successive
subintervals, but where the last one has infinite length, and is possibly the interval itself. The construct S1 (read
“chop-infinity”) is used to denote the union of both kinds of behavior for chop-star on infinite intervals:

S1
def
� S� ^ inf :

The syntax forever do S is sometimes used as an alternative programming-language based notation for S1. In addition,
the following two variant notations permit referencing a marker such as Mk:

chopinf MkS; foreverMk do S:

The first-order operators for temporal assignment and padded temporal assignment are redefined to be true only on
finite intervals:

e e0
def
� finite ^ (fin e) = e0;

e <� e0
def
� finite ^ (fin e) = e0 ^ padded e:

Once this is done, all the axioms and basic inference rules remain sound. We also include the following two
propositional axioms:

P13 ` (S ^ inf ); T � S ^ inf ;
P14 ` S ^ 2

�

S � (T ^ more); S
�

� T�:

The first-order axiom now given is sometimes needed for constructing auxiliary variables with chop-star:

F11 `
�

8v: 9v0: (v = v0 ^ S)
�

�

� 8v: 9v0: (v = v0 ^ S�);
where v and v0 are state variables and v does not occur freely S.

It seems likely that completeness in the sense of Theorem 3.1 can only be achieved with a nonconventional inference
rule. This is not central to our approach.
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fK = jg
stable K ^ finite
fK = jg

2

m
(K = j) ^ finite

K <� 2K
fK = 2jg

2

m
(K = j)

^ 2

m
3K = 2j

^ 3K = 2j

2

m
(K = j)

^ 2

m
3K = 2j

^ 3K = 2j
2

m
(K = i � 3K = 2i)

Figure 7: Proof outline for lemma (19).

5.1 A Simple Example Involving Infinite Time

The following example requires reasoning about infinite intervals:

`

�

(stable K ^ finite); K <� 2K
�

1

� 2(K = i � 3K = 2i):

As it shows, when analyzing such intervals, one must sometimes explicitly specify or prove that certain subintervals
have finite length.

Proofs can use the fact that the operators 2 and 2m are equivalent on infinite intervals:

` inf � 2S � 2m S:

Once infinite intervals are permitted, one must use rules such as the following variant of derived rule (18) for
reachability proofs:

` w ^ As ^ Sys � finite ^ fin w0;
` w0 ^ As ^ Sys0 � 2

m
(x � DA) ^ DA ^ fin w00

` w ^ As ^ (Sys; Sys0) � 2

m
(x � DA) ^ DA ^ fin w00:

(18)

Here we ensure that the interval satisfying Sys is finite, thus guaranteeing that DA does indeed occur in Sys; Sys0. Note
that the formula finite is not a fixpoint of chop-star. See Figures 7 and 8 for respective proof outlines for the following
lemmas needed for the above example:

`

�

(stable K ^ finite); K <� 2K
�

� 2

m
(K = i � 3K = 2i); (19)

`

�

(stable K ^ finite); K <� 2K
�

1

� 2(K = i � 3K = 2i): (20)

Without loss of generality, Figure 8 uses existential quantification to introduce a static variable j equally K’s value at
the beginning of each loop iteration. A modified version of rule (18) permitting other exportable commitments as well
is used:

` w ^ As ^ Sys � Co ^ finite ^ fin w0;
` w0 ^ As ^ Sys0 � Co ^ 2

m
(x � DA) ^ DA ^ fin w00

` w ^ As ^ (Sys; Sys0) � Co ^ 2

m
(x � DA) ^ DA ^ fin w00:

Sometimes each of a sequence of components implies finite. This can be reduced by means of the derived rule now
given:

` w ^ As ^ Sys � finite ^ fin w0;
` w0 ^ As ^ Sys0 � finite ^ fin w00

` w ^ As ^ (Sys; Sys0) � finite ^ fin w00:

5.2 Compositionally Proving Absence of Deadlock

Let us now present a compositional analysis proving the absence of deadlock. This small example illustrates shared
write access and involves fewer concepts in its specification and analysis than the mutual exclusion examples considered
later in Section 6. For instance, no markers or other auxiliary variables are required here. Figure 9 shows two simple
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ftrueg
forever times do (
ftrueg
9j: (
fK = jg
LoopBody
fK = 2jg

2

m
(K = i � 3K = 2i)

)

ftrueg

2

m
(K = i � 3K = 2i)

)

ftrueg

2(K = i � 3K = 2i)

Figure 8: Proof outline for lemma (20).

F1
def
� for some times do ( F2

def
� for some times do (

K <� K + 1; halt odd(K);
halt even(K) K <� K + 1

) )

Figure 9: A simple parallel system

processes F1 and F2 which alternately modify a single variable K. The iterating in F1 and F2 is expressed by means
of the chop-star operator in the notation of a for-loop. The predicates even and odd are simple arithmetic tests. Here
is the overall system together with K initially equal to 0:

K = 0 ^ F1 ^ F2:

When K is even, F1 keeps it stable for a while and then eventually increments it, thus making it odd. At this time, F2
keeps K stable and then increments it, thus handing responsibilityfor it back to F1. This continues for some unspecified,
possibly infinite number of times. We use padded temporal assignments in order to ensure proper communication
between F1 and F2.

Here is a theorem describing correctness of the overall system:

` even(K) ^ F1 ^ F2 � keep(K � 
K � K + 1) ^ fin even(K):

The theorem uses the keep operator defined earlier to state that K is always stable or increases by 1 over pairs of
adjacent states. In addition, K’s final value is even. In [16] we consider how to compositionally prove this safety
property. The proof holds for both finite and infinite intervals.

The discussion so far only deals with showing that the variable K continues to remain stable or increase. It remains
for us to ensure that when the combined system operates over an infinite interval, K never gets stuck at some value.
Here is an ITL theorem which expresses this:

` inf ^ even(K) ^ F1 ^ F2 � 2: stable K:

The next lemma plays an important role in our overall analysis:

` A 6= B ^ A <� B � 2

m
: stable A:

This states that if the state variable A is padded and its initial and final values in the (finite) interval differ, then A is
not stable in all nonempty terminal subintervals. Here is a slightly simplified substitution instance of this that is used
when the variable K increases by 1:

` K <� K + 1 � 2

m
: stable K:
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We have omitted the subformula K 6= K + 1 since it is trivially true. The following lemmas consider the behavior of
F1 and F2:

` even(K) ^ F1 � 2

m
�

even(K) � : stableK
�

^ fin even(K); (21)
` even(K) ^ F2 � 2

m
�

odd(K) � : stableK
�

^ fin even(K): (22)

Note that fin is defined to be weak and is therefore trivially true for infinite intervals. The proofs compositionally use
lemmas such as those below for the sequential parts of F1:

` even(K) ^ K <� K + 1 � 2

m
�

even(K) � : stable K
�

^ fin odd(K);
` odd(K) ^ halt even(K) � 2

m
�

even(K) � : stableK
�

^ fin even(K):

We combine lemmas (21) and (22) for F1 and F2 in parallel to obtain the following:

` even(K) ^ F1 ^ F2 � 2

m
: stableK: (23)

Our assumption about infinite time is then introduced in the following lemma:

` inf ^ 2

m
: stableK � 2: stableK:

From this and lemma (23) we obtain the desired theorem:

` inf ^ even(K) ^ F1 ^ F2 � 2: stable K:

In [17] we deduce this without the use of 3i -fixpoints by introducing an auxiliary variable. The resulting proof has
more steps.

6 Two Examples Involving Mutual Exclusion

We now analyze the safety and liveness properties of two systems for mutual exclusion. They have served as our main
case studies during the development of the methods described in this work. Both are more complex than any of the
examples discussed earlier and together require all of the technical machinery presented in the previous sections. The
first example is the simpler of the two to describe but can sometimes deadlock. The second, modified system found
later in Subsect. 6.3 remedies this problem but requires the introduction of extra variables which act as time stamps.

The first system, known as GSys, is composed of two parallel parts G1 and G2 shown in Figure 10. The combined
specification together with initialization is as follows:

S1=C1=S2=C2=false ^ G1 ^ G2:

Here G1 sets S1 to true when requesting entry into G1’s critical region. Upon entry, G1 sets C1 to true and keeps it
true until departure from the critical region. At this time C1 and then S1 are reset to false and remain so until the next
attempt for entry is made. The usage by G2 of variables S2 and C2 for controlling its critical region is analogous. We
can verify the safety property that C1 and C2 are never both true at the same instant:

` S1=C1=S2=C2=false ^ G1 ^ G2 � 2(:C1 _ :C2): (24)

Liveness of the form 23C1 ^ 23C2 cannot be proved because G1 and G2 might both simultaneously attempt to
enter their respective critical regions and deadlock. To some extent, one can deal with this by including the following
assumption asserting that G1 and G2 do not initiate requests at the same time:

keep
�

:S1 ^ :S2 � 


(:S1 _ :S2)
�

:

We instead show a weaker liveness property stating that C1 and C2 are always eventually false:

` S1=C1=S2=C2=false ^ G1 ^ G2 � 23(:C1 ^ :C2):
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G1
def
� forever do ( G2

def
� forever do (

S1 <� true ^ stable C1; S2 <� true ^ stable C2;
halt:S2 ^ stable(S1;C1); halt:S1 ^ stable(S2;C2);
C1 <� true ^ stable S1; C2 <� true ^ stable S2;
C1 <� false ^ stable S1; C2 <� false ^ stable S2;
S1 <� false ^ stable C1 S2 <� false ^ stable C2

) )

Figure 10: Simple mutual exclusion system

6.1 Safety of GSys

Here is an overview of the proof of safety:

(a) Compositionally show that whenever G2 makes no entry request and S2 is false, C2 is also false:

` :S2 ^ :C2 ^ G2 � 2(:S2 � :C2):

A theorem for the behavior imposed by G1 on S1 and C1 is analogous but not needed for the proof of theorem (24).

(b) Without loss of generality, introduce an auxiliary boolean variable P2 which is true whenever G2 has been given
permission to enter its critical region. More precisely, when S2 and P2 are both true, we know that G2 has
advanced passed its step containing the halt formula. Note that C2 is not yet necessarily true. Associated with
P2 is an assumption P2 As which we later define.

(c) Prove that whenever S2 is true but P2 is false, G2 forces C2 to be false since G2 has requested approval to enter
its critical region but not yet received it:

` :S2 ^ :C2 ^ P2 As ^ G2 � 2(:P2 � :C2):

This uses the assumption P2 As which characterizes P2.

(d) Import the result of (c) into G1 to show that whenever C1 is true, C2 must be false.

(e) Combine everything together to complete the proof of the main safety theorem (24).

We now look at the proof’s steps in more detail.

6.1.1 Step (a).

We desire to prove the following lemma:

` :S2 ^ :C2 ^ G2 � 2(:S2 � :C2): (25)

The consequent 2(:S2 � :C2) is not itself exportable (although it is importable) so we recast the lemma using the
formula 2m (:S2 � :C2) as the commitment Co instead. Figure 11 shows a proof outline for this.

6.1.2 Step (b).

We use the following general theorem about the gets construct (see its definition in Section 3 for introducing auxiliary
variables:

` 9A: (A gets e):
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f:C2g
forever do (
f:C2g
S2 <� true ^ stable C2
f:C2g

2

m
:C2

halt:S1 ^ stable(S2;C2)
f:C2g

2

m
:C2

2

m
:C2 Co

C2 <� true ^ stable S2
fC2g

2

m S2

C2 <� false ^ stable S2
f:C2g

2

m S2

S2 <� false ^ stable C2
f:C2g

2

m S2

2

m S2 Co

Co

)

2(:S2 � :C2)

Figure 11: Proof outline for lemma (25).

Here the state variable A and the expression e have the same sort. We allow A to occur in e but not within the context
of temporal operators. These restrictions ensure that A is not circularly defined. Here is an instance of this for the
variable P2:

` 9P2:
�

P2 gets
�

(P2 ^ S2) _ 


:S1
�

�

: (26)

This constructs an auxiliary boolean variable P2 which monitors whether G1 has permission to enter its critical region.
In order to do this, P2 keeps track about whether S1 has ever been false since S2 last become true. Between each pair
of adjacent states, the next value of P2 is determined based on the current value of P2 and S2 and the next value of S1.
If S2 is false, then the next value of P2 equals the next value of :S1. Otherwise, it is the logical-or of the current value
of P2 and the next value of :S1. This ensures that after G2 requests entry and S2 becomes true, P2 is also true iff S1
has been false in at least in one state from then to now, inclusively. When G2 has a successful request, both S2 and P2
are simultaneously true. It is possible to include information about the initial value of P2 but this does not seem to be
necessary for our proof.

In what follows, we use the gets subformula in an assumption about P2’s behavior called P2 As:

P2 As
def
� P2 gets

�

(P2 ^ S2) _ 


:S1
�

:

This is importable because the gets-formula is a2a -fixpoint since it is defined in terms of keep. In much of the remainder
of the overall proof of safety, we refer to P2 as a free variable. Towards the end, we eliminate it through the use of
lemma (26) above.

6.1.3 Step (c).

We wish to show that whenever during G2’s operation P2 is false, C2 is also false:

` :S2 ^ :C2 ^ P2 As ^ G2 � 2(:P2 � :C2): (27)

The exportable commitment Co used here is 2m (:P2 � :C2). Note that as in step (a), Co uses 2m instead of 2:

` :S2 ^ :C2 ^ P2 As ^ G2 � 2

m
(:P2 � :C2):

The proof outline for lemma (27) is given in Figure 12.
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f:S2 ^ :C2g
forever do (
f:S2 ^ :C2g
S2 <� true ^ stable C2
fS2 ^ :C2 ^ (P2 � :S1)g

2

m
:C2

halt:S1 ^ stable(S2;C2)
fS2 ^ P2g

2

m
:C2

2

m
:C2 Co

C2 <� true ^ stable S2
fS2 ^ P2g

2

m P2

C2 <� false ^ stable S2
fS2 ^ :C2 ^ P2g

2

m P2

S2 <� false ^ stable C2
f:S2 ^ :C2g

2

m P2

2

m P2 Co

Co

)

2(:P2 � :C2)

Figure 12: Proof outline for lemma (27).

6.1.4 Step (d).

Our goal in this step is to import into G1 an assumption about the results regarding G2 in steps (a), (b) and (c). Let us
define the assumption G1 As:

G1 As
def
� 2

a
�

(:S2 _ :P2) ^ 2S1 � 2:C2 ^ fin(:S2 _ :P2)
�

:

It states that in any interval where initially no successful request is being made by G2 (i.e., :S2 _ :P2) S1 is always
true (2S1), then G2 never enters its critical region and finishes the interval as it started without a successful request
(fin(:S2 _ :P2)) The assumption G1 As is obtained from P2 As and the two commitments exported from G2:

` P2 As ^ 2(:S2 � :C2) ^ 2(:P2 � :C2) � G1 As:

We then prove the following about G1:

` :S1 ^ :C1 ^ G1 As ^ G1 � 2(:C1 _ :C2): (28)

See Figure 13 for a proof outline of this in which the commitment Co is 2m (:C1 _ :C2). Note that G1 As is
only actually needed in the proof of the step where C1 is assigned true since we trivially have 2m :C1 and hence
2

m
(:C1 _ :C2) true everywhere else.

6.1.5 Step (e).

We consolidate the previous lemmas into the desired safety theorem (24). Here are the main lemmas so far dealt with:

` :S2 ^ :C2 ^ G2 � 2(:S2 � :C2);
` 9P2: P2 As;
` :S2 ^ :C2 ^ P2 As ^ G2 � 2(:P2 � :C2);
` P2 As ^ 2(:S2 � :C2) ^ 2(:P2 � :C2) � G1 As;
` :S1 ^ :C1 ^ G1 As ^ G1 � 2(:C1 _ :C2):

We now combine most of these to obtain the following lemma for G1 and G2 together:

` S1=C1=S2=C2=false ^ P2 As ^ G1 ^ G2 � 2(:C1 _ :C2):

Let us now existentially quantify P2 in P2 As since P2 does not occur elsewhere in the implication:

` S1=C1=S2=C2=false ^ (9P2: P2 As) ^ G1 ^ G2 � 2(:C1 _ :C2):

We can then eliminate P2 to obtain the final theorem:

` S1=C1=S2=C2=false ^ G1 As ^ G1 ^ G2 � 2(:C1 _ :C2):

7th BCS-FACS Refinement Workshop, 1996 19



Compositionally Reason about Liveness

f:S1 ^ :C1g
forever do (

f:S1 ^ :C1g
S1 <� true ^ stable C1
fS1 ^ :C1g

2

m
:C1

halt:S2 ^ stable(S1;C1)
fS1 ^ :C1 ^ :S2g

2

m
:C1

2

m
:C1 Co

C1 <� true ^ stable S1
fS1 ^ C1
^ (:S2 _ :P2)g

2:C2 2

m
:C2 Co

C1 <� false ^ stable S1
fS1 ^ :C1g

2:C2 2

m
:C2 Co

S1 <� false ^ stable C1
f:S1 ^ :C1g

2

m
:C1 Co

Co

)

2(:C1 _ :C2)

Figure 13: Proof outline for lemma (28).

6.2 Liveness of GSys

Recall that our liveness theorem for GSys is limited to ensuring that both G1 and G2 are always eventually outside
their critical regions at the same time:

` S1=C1=S2=C2=false ^ G1 ^ G2 � 23(:C1 ^ :C2): (29)

To establish this, we first prove that G2 is always eventually outside its critical region:

` :S2 ^ :C2 ^ G2 � 23:C2: (30)

A proof outline for this is shown in Figure 14.
Lemma (25) mentioned earlier states that G2 implies2(:S2 � :C2). This is combined with lemma (30) to obtain

an assumption:

` 23:C2 ^ 2(:S2 � :C2) � 2

a
(halt:S2 � 23:C2): (31)

The following lemma imports this assumption into the process G1:

` S1=C1=S2=C2=false ^ 2

a
(halt:S2 � 23:C2) ^ G1 � 23(:C1 ^ :C2): (32)

In order to prove this, we use a slight variant of G1 called G10 which includes an explicit marker Mk in its forever
construct (foreverMk) and we then deduce the following:

` :S1 ^ :C1 ^ Mk ^ 2

a
(halt:S2 � 23:C2) ^ G10

� 2

�

3(:C1 ^ :C2) _ 3Mk
�

^ 2

�

Mk � 3(:C1 ^ :C2)
�

:

(33)

A proof outline for this containing G10 is given in Figure 15. It uses for the3a -fixpoint DA the formula3(:C1 ^ :C2)
and for Co the formula2m (DA _ 3Mk). The two2-formulas can be combined using conventional temporal reasoning:

` 2

�

3(:C1 ^ :C2) _ 3Mk
�

^ 2

�

Mk � 3(:C1 ^ :C2)
�

� 23(:C1 ^ :C2):

We then hide the marker Mk to obtain lemma (32). Theorem (29) can then be deduced from lemmas (30), (31) and
(32).
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f:C2g
forever do (

f:C2g
S2 <� true ^ stable C2
f:C2g

2:C2 2

m
3:C2

halt:S1 ^ stable(S2;C2)
f:C2g

2:C2 2

m
3:C2

C2 <� true ^ stable S2
fC2g

2

m
:C2 2

m
3:C2

C2 <� false ^ stable S2
f:C2g

sfin:C2 2

m
3:C2

S2 <� false ^ stable C2
f:C2g

2:C2 2

m
3:C2

2

m
3:C2

)

23:C2

Figure 14: Proof outline for lemma (30).

f:C1 ^ Mkg
foreverMk do (
f:C1 ^ Mkg
S1 <� true ^ stable C1
f:C1g

finite

halt:S2 ^ stable(S1;C1)
f:C1g

2:C1
^ 23:C2

2DA
^ DA

Co
^ DA

Co
^ DA

C1 <� true ^ stable S1
fC1g

finite

C1 <� false ^ stable S1
f:C1g

finite
finite

S1 <� false ^ stable C1
f:C1 ^ Mkg

sfin Mk
2

m
3Mk

^ 3Mk

2

m
3Mk

^ 3Mk Co

Co
^ DA

)

Co
^ 2

m
(Mk � DA)

Figure 15: Proof outline for lemma (33).
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H1
def
� forever do ( H2

def
� forever do (

S1 <� true ^ stable C1; S2 <� true ^ stable C2;
halt(:S2 _ T1 � T2) halt(:S1 _ T2 < T1)
^ stable(S1;C1); ^ stable(S2;C2);

C1 <� true ^ stable S1; C2 <� true ^ stable S2;
C1 <� false ^ stable S1; C2 <� false ^ stable S2;
S1 <� false ^ stable C1 S2 <� false ^ stable C2

) )

Figure 16: Mutual exclusion system with time stamps

6.3 Mutual Exclusion Using Time Stamps

We now turn to a variant of the mutual exclusion example called here HSys and based on a suggestion of Xu, Cau and
Zedan [25] to maintain time stamps (referred to here as T1 and T2) which record when the most recent changes to S1
and S2 have occurred. Figure 16 shows the parallel parts H1 and H2 which can both try to enter their respective critical
regions. In the event that H1 and H2 both make requests (i.e., S1 ^ S2), the one with the older request has priority.
If there is a tie (i.e., T1 = T2), then H1 has preference. This explains why H1 uses � in its halt construct whereas
H2 uses <. The maintenance of time stamps presumes the existence of a state variable we call Timer which always
increases:

keep(Timer <


Timer):

The time stamp variables T1 and T2 are initially less than or equal to Timer and always record the last time S1 and S2
changed, respectively:

T1 � Timer ^
�

T1 gets (if stable S1 then T1 else 
Timer)
�

;

T2 � Timer ^
�

T2 gets (if stable S2 then T2 else 
Timer)
�

:

Note that a time stamp equals the last time immediately after a change (i.e., 
Timer).
The formulas H1 init, H2 init and HSys init denote the respective initial conditions for H1, H2 and HSys:

H1 init
def
� :S1 ^ :C1 ^ T1 � Timer;

H2 init
def
� :S2 ^ :C2 ^ T2 � Timer;

HSys init
def
� H1 init ^ H2 init:

Below are definitions for assumptions about the timer and time stamps:

Timer As
def
� keep(Timer <


Timer)

T1 As
def
� T1 � Timer ^ Timer As ^

�

T1 gets (if stable S1 then T1 else 
Timer)
�

;

T2 As
def
� T2 � Timer ^ Timer As ^

�

T2 gets (if stable S2 then T2 else 
Timer)
�

;

T12 As
def
� T1 As ^ T2 As:

The lemmas now given assist for general reasoning about the time stamps T1 and T2. In particular, they establish that
T1 As, T2 As and T12 As are indeed 2a -fixpoints and can be used as assumptions.

` T1 As � 2T1 � Timer;
` T2 As � 2T2 � Timer;
` T1 As � 2a T1 As;
` T2 As � 2a T2 As;
` T12 As � 2a T12 As:
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f:S2 ^ :C2g
forever do (
f:S2 ^ :C2g
S2 <� true ^ stable C2
fS2 ^ :C2g

2

m
:C2

halt(:S1 _ T2 < T1)
^ stable(S2;C2)

fS2 ^ :C2
^ (:S1 _ T2 < T1)g

2

m
:C2

C2 <� true ^ stable S2
fS2 ^ C2
^ (:S1 _ T2 < T1)g

2

m
:C2

2

m
:C2 Co

C2 <� false ^ stable S2
fS2 ^ :C2g

2

m
(:S1 _ T2 < T1) Co

S2 <� false ^ stable C2
f:S2 ^ :C2g

2

m
:C2 Co

Co

)

2(S1 ^ T1 � T2 � :C2)

Figure 17: Proof outline for lemma (37).

Here are theorems for safety and liveness:

` HSys init ^ T12 As ^ H1 ^ H2 � 2(:C1 _ :C2); (34)
` HSys init ^ T12 As ^ H1 ^ H2 � 23C1 ^ 23C2: (35)

The proof of each is considered separately.

6.4 Safety for HSys

We first consider proving the theorem about safety. This does not require introducing a new auxiliary variable such as
P2 since the time stamps turn out to be sufficient. An assumption imported into H1 and called H1 As is used:

H1 As
def
� 2

a
�

(:S2 _ T1 � T2) ^ 2S1 � 2:C2 ^ fin(:S2 _ T1 � T2)
�

:

It is analogous to G1 As and states that in any interval where H1 maintains an active request (2S1) and initially H2 is
not requesting (:S2) or has a request which is not older than H1’s (T1 � T2) then H2 never enters its critical region
(2:C2) and ends up with the same general request status (fin(:S2 _ T1 � T2)).

Below are the major lemmas needed:

` :S2 ^ :C2 ^ H2 � 2(:S2 � :C2); (36)
` H2 init ^ T2 As ^ H2 � 2(S1 ^ T1 � T2 � :C2); (37)
` T12 As ^ 2(:S2 � :C2) ^ 2(S1 ^ T1 � T2 � :C2) � H1 As; (38)
` H1 init ^ T1 As ^ H1 As ^ H1 � 2(:C1 _ :C2): (39)

The proof of lemma (36) is similar to that of lemma (25) and omitted. The proof outline for lemma (37) is shown in
Figure 17. It uses for the exportable commitment Co the formula 2m (S1 ^ T1 � T2 � :C2).

Lemma (38)’s proof involves straightforward temporal reasoning and is not given. See Figure 18 for a proof of
lemma (39). The exportable commitment Co used by it is 2m (:C1 _ :C2). From these we can deduce theorem (34)
about safety.

6.5 Liveness for HSys

The proof of liveness theorem (35) for HSys involves four key lemmas about the processes H1 and H2:

` H2 init ^ T12 As ^ H2 � 23T1 � T2; (40)
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f:S1 ^ :C1g
forever do (
f:S1 ^ :C1g
S1 <� true ^ stable C1
fS1 ^ :C1g

2

m
:C1

halt(:S2 _ T1 � T2)
^ stable(S1;C1)
fS1 ^ :C1
^ (:S2 _ T1 � T2)g

2

m
:C1

2

m
:C1 Co

C1 <� true ^ stable S1
fS1 ^ C1
^ (:S2 _ T1 � T2)g

2:C2 2

m
:C2 Co

C1 <� false ^ stable S1
fS1 ^ :C1g

2:C2 2

m
:C2 Co

S1 <� false ^ stable C1
f:S1 ^ :C1g

2

m
:C1 Co

Co

)

2(:C1 _ :C2)

Figure 18: Proof outline for lemma (39).

` H1 init ^
�

T12 As ^ 2a (halt T1 � T2 � finite)
�

^ H1 � 23C1; (41)
` H1 init ^ H1 � 2(C1 � 3:S1); (42)
` H2 init ^

�

T12 As ^ 2a (halt:S1 � finite)
�

^ H2 � 23C2: (43)

The first of these states that H1’s request is at least as old as H2’s infinitely often. It ensures that H2 is not making
too many requests without giving H1 a chance. The second lemma uses the the first one’s results (converted to an
importable assumption) to establish that H1 enters its critical region infinitely often. The consequent of the first lemma
is converted to a2a -fixpoint which is used as part of the second lemma’s assumption. Recall that2a -fixpoints are closed
under conjunction so a number of them can be imported together. The third lemma states that when H1 enters its
critical region, it also eventually leaves it and resets the request variable S1 to false. The consequents of the second
and third lemmas are combined to form an assumption2a (halt:S1 � finite) specifying that H1 is never infinitely long
requesting entry without success. This assumption is used in the fourth lemma to show that H2 enters its critical region
infinitely often.

A proof outline of lemma (40) is in Figure 19 and uses DA to represent the formula3(T1 � T2). Figure 20 shows
a proof for lemma (42) with Co being the exportable commitment 2m (C1 � 3:S1). We also include proof outlines for
versions of the second and fourth lemmas with explicit markers. They use slight variants of H1 and H2 called H10 and
H20, respectively, containing loops referencing markers (i.e., foreverMk instead forever). The lemmas for H10 and H20

are now shown:

` H1 init ^ Mk ^

�

T12 As ^ 2a (halt T1 � T2 � finite)
�

^ H10 � 23(C1 _ Mk) ^ 2(Mk � 3C1); (44)
` H2 init ^ Mk ^

�

T12 As ^ 2a (halt:S1 � finite)
�

^ H20 � 23(C2 _ Mk) ^ 2(Mk � 3C2): (45)

The proof outline for lemma (44) is in Figure 21 and uses Co to represent the formula 2m (3C1 _ 3Mk) and DA to
represent 3C1. Figure 22 contains the proof outline for lemma (45). It uses Co to stand for 2m3(C2 _ Mk) and DA to
stand for 3C2. The two corresponding lemmas (41) and (43) for H1 and H2, respectively, are obtained from these
with the help of the following lemmas and existential elimination of existential quantifiers:

` 23(C1 _ Mk) ^ 2(Mk � 3C1) � 23C1;
` 23(C2 _ Mk) ^ 2(Mk � 3C2) � 23C2:

Here are some simple temporal lemmas for converting consequents of some of the lemmas into assumptions
imported by others.

` 23T1 � T2 � 2

a
(halt T1 � T2 � finite);
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f:S2g
forever do (
f:S2g
S2 <� true ^ stable C2
fS2g

sfin(T1 � T2) 2

m DA

halt(:S1 _ T2 < T1)
^ stable(S2;C2)
fS2g

2

m
(T1 � T2) 2

m DA

C2 <� true ^ stable S2
fS2g

finite

C2 <� false ^ stable S2
fS2g

finite
finite

S2 <� false ^ stable C2
f:S2g

sfin(T1 � T2)
2

m DA
^ DA

2

m DA

2

m DA

)

2DA

Figure 19: Proof outline for lemma (40).

f:C1g
forever do (
f:C1g
S1 <� true ^ stable C1
f:C1g

2

m
:C1

halt(:S2 _ T1 � T2)
^ stable(S1;C1)

f:C1g

2

m
:C1

C1 <� true ^ stable S1
fC1g

2

m
:C1

2

m
:C1 Co

C1 <� false ^ stable S1
f:C1g

finite

S1 <� false ^ stable C1
f:C1g

2

m
:C1

^ 3:S1
Co
^ 3:S1

Co

Co

)

2(C1 � 3:S1)

Figure 20: Proof outline for lemma (42).
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fMk ^ :C1g
foreverMk do (
fMk ^ :C1g
S1 <� true ^ stable C1
f:C1g

finite

halt(:S2 _ T1 � T2)
^ stable(S1;C1)

f:C1g

finite
finite

C1 <� true ^ stable S1
fC1g

sfin C1
2

m DA
^ DA

2

m DA
^ DA

Co
^ DA

C1 <� false ^ stable S1
f:C1g

finite

S1 <� false ^ stable C1
fMk ^ :C1g

sfin Mk
2

m
3Mk

^ 3Mk

2

m
3Mk Co

Co
^ DA

)

23(C1 _ C2)
^ 2

m
(Mk � DA)

Figure 21: Proof outline for lemma (44).

f:C2 ^ Mkg
foreverMk do (
f:C2 ^ Mkg
S2 <� true ^ stable C2
f:C2g

finite

halt(:S1 _ T2 < T1)
^ stable(S2;C2)

f:C2g

finite
finite

C2 <� true ^ stable S2
fC2g

sfin C2
2

m
3C2

^ 3C2

2

m
3C2

^ 3C2

C2 <� false ^ stable S2
f:C2g

2

m C2 2

m
3C2

2

m
3C2

^ 3C2

S2 <� false ^ stable C2
f:C2 ^ Mkg

sfin Mk 2

m
3Mk Co

Co
^ 3C2

)

23(C2 _ Mk)
^ 2

m
(Mk � 3C2)

Figure 22: Proof outline for lemma (45).
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` 23C1 ^ 2(C1 � 3:S1) � 23:S1;
` 23:S1 � 2

a
(halt:S1 � finite):

7 Conclusion

We have presented some of our experience with using temporal fixpoints for compositional reasoning about safety
and liveness. Our plans include applying these and other methods to the formal specification and analysis of various
conceptual layers of the EP/3 multithreaded computer [1] being built by Dr. J. N. Coleman at the University of
Newcastle.
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